
1

Roundtable White Paper
Working With Purchased Applications

Introduction
It is fairly common for a company to purchase an application from a vendor then
highly customize it. When the vender sends you a patch, you need to integrate
it into your custom version of the application. This is facilitated by Roundtable’s
management of object variants (customized objects). You are able to generate a
list of all objects changed by the vender, promote these changes forward
through your development life cycle without overwriting your custom versions,
and generate a list of objects changed by both you and the vendor.

Implementation

Loading the Vendor Application
In the most common scenario, you use four workspaces: a generic “vendor load”
workspace, a development workspace, a QA workspace, and a production
workspace. In the following diagram, the example workspace names are
prefixed with a “V1” as the example application is version 1:

After defining the above workspaces (and sources shown by the arrows) the
purchased application is loaded into “V1Vendor” (see the white paper entitled
“Loading Your Application”). This release is then imported (promoted) forward
to “V1Devel”, to “V1Test, and then to “V1Prod”.

Loading the Existing Customizations
All work performed at you site will be treated as a customization. All objects
loaded in the “V1Vendor” workspace are assigned product modules from a set of
vendor Pmods. You must also define a set of custom Pmods for your WSmods
(remember that a WSmod is the group that defines the directory for objects and
a Pmod is just an attribute of an object).

V1Vendor V1Devel V1Test V1Prod

2

Example WSmod and Pmod definitions

WSMods Directory Vendor Pmods Custom Pmods
code inv/code VenCode CstCode
includes inv/includes VenIncludes CstIncludes
trig common/trig VenTrig CstTrig

The “V1Devel” workspace currently has only the generic vendor application in it
(imported from “V1Vendor”). Either change the “V1Devel” workspace path to
point to your customized version of the application or overlay your custom
version in the current directory. Use Module load to load in all new objects
(specifying only the “Cst” Pmods). Use the Group Check Out’s Global Change
Finder to find and check out all objects that you have customized – specify that
the Group Check Out should give all the objects “Cst” Pmod when checked out.
When you complete the task, you now have all customizations loaded into the
“V1Devel” workspace. You can cut a release and move it to “V1Prod”.

Future Development
You do not check out objects flagged with a Vendor Pmod. You first change the
Pmod to a “Cst” Pmod (see the white Paper entitled “Managing Customizations”
and the Roundtable User’s Guide for more information on how to create object
variants - change the Pmod attribute). We recommend that you apply non-
primary security to RTB to keep developers from accidentally checking out
objects without giving them a Cst Pmod.

Loading a Vendor Patch
When you receive a patch from the vendor, apply it to the “V1Vendor”
workspace directory. You then use “Module Load” to load in new objects and
use the “Group Check Out’s Global Change finder” to find changed objects
(leaving the Pmods as “Ven” Pmods when checking them out). After completing
the task and creating a release, you can run the release report to generate a list
of EVERY changed and new object (something even the vendor may not have).

When you import the release into “V1Devel”, only the objects that you have not
customized will be imported. Objects that have changed in both “V1Devel” and
“V1Vendor” will be marked as “EXC” in the import list (excluded) and will not be
imported. You should then use the release report generated in “V1Vendor” to
see all objects that have been changed both you and the vendor so that you
know what changes nee to be merged (see the white paper entitled “Managing
Customizations” for directions on using the release report to show objects that
need changes merged).

3

Parallel Development

Multiple Versions of the Vendor App
You may also get into a situation where the Vender sends you a new version of
their app that either has too many changes to implement at once or runs on the
next Progress version. In this situation, you may want to have a new
environment to work on the new version of the application while still maintaining
the original environment for fixing bugs, etc.

Roundtable allows the implementation of parallel development cycles. This
means that you can set up a work environment for working on separate “version
branching” of your application. The complete environment is shown in the
following diagram:

Implementation
The desired goals are:

* To obtain a list of every object that has changed between V1 and the new
V2 of the Vendor App.

* To find all objects in that list that you have also customized.

After defining the new workspaces (and sources shown by the arrows above),
the first step is to bring the V2 vendor environment up to the V1 state (we’ll

V2Vendor V2Devel V2Test V2Prod

V1Vendor V1Devel V1Test V1Prod

4

need the V1 base-line for the release report later). To do this, create a
temporary source from “V1Vendor” to “V2Vendor” and import the last release.
You can then remove the source and cut a release in “V2Vendore” to mark the
V1 base line.

Next, define a temporary source from “V1Devel” to “V2Devel” and import the
latest customized version of the Application. You can then remove the source
and cut a release. You now have the latest “customized” version of your
customized application in “V2Devel”. Import it to “V2Test” and “V2Prod”. We’ll
pretend (for the moment) that there wasn’t any half completed work in
“V1DEVEL” or “V1Test” waiting to be moved into production.

Loading the New Vendor Version
You can now load V2 of the vendor application. Either change the “V2Vendor”
directory to point to the new V2 of the vendor app or completely delete and
replace the app in the current workspace directory (do not overlay V2 on top of
V1 as you want the global change finder to find objects that the vendor removed
from the application). You can now use module load to find all new objects and
use the Group Check Out’s Global Change Finder to find all changed and deleted
objects (leave them in the Ven Pmods when being checked out). After
completing the task and creating a release, you can run the release report to see
all objects changed between V1 and V2 (something the Vendor may not even
have). Remember to use the load schema to pull in any new schema changes
from the vender database.

When you import the release into “V2Devel”, only the objects that you have not
customized will be imported. Objects that are object variants in “V2Devel” and
have changed in “V2Vendor” will be marked as “EXC” in the import list
(excluded). You should then use the release report generated in “V2Vendor” to
see all objects that have been changed both you and the vendor so that you
know what changes nee to be merged (see the white paper entitled “Managing
Customizations” for directions on using the release report to show objects that
need changes merged). This list may be quite large if you have changed many
objects and the vendor has changed many of the same objects.

Version Branching
You now have two separate workspace flows (or two development life-cycle
flows, or two promotional models, or whatever terms you wish to use) defined.
You can patch the old version in “V1Devel” without interfering with the merging
of changes in “V2Devel” from “V2Vendor”.

Since you will want patches from “V1Devel” to get into “V2Devel” as well, I
recommend that you use version branching (described in the white paper
“Managing Customizations”). In a nutshell, you only create “patches” in the

5

“V1Devel” workspace. A patch is the smallest versioning unit. It is the “01” if
you have version “031601” (read 03.16.01 or Version 03 Revision 16 Patch 01).
If the same object has not been touched in “V2Devel”, you can just assign the
object patch you created in “V1Devel” to “V2Devel”.

If the object has been changed in “V2Devel” before you made the change to the
same object in “V1Devel”, then you need to merge the changes in. Always
create either revisions or versions in “V2Devel” to keep the branches simple. For
example:

V2Devel V1Devel Work Performed
02.12.00 02.12.00 Same version in both to start
02.12.00 02.12.01 Patch made in V1Devel
02.12.01 02.12.01 Patch can just be assigned to V2Devel
03.00.00 02.12.01 V2 specific change made in V2Devel – you are starting

different branches in the workspaces now
03.01.00 02.12.01 Another V2 specific change made in V2Devel
03.01.00 02.12.02 Fix made in V1Devel
03.02.00 02.12.02 Same fix also made in V2Devel

You do not have to only patch in V1 and not use patch in V2, but this policy
makes the changes’ origins very obvious just by glancing at the version.

Don’t forget about the changes that were in “V1Devel” and “V1Test” that we
ignored while you were loading the V2 application into RTB. Either assign them
to “V2Devel” or also make the change in the “V2Devel” version. From that point
on, all changes done in “V1Devel” have to be assigned to “V2Devel” or merged
into “V2Devel” objects as described above.

Two Versions of Progress
If the two versions of the vendor’s app also require two different versions of
Progress (V8 and V9 for example), you follow all the same steps. You leave the
repository as V8 so that both V8 and V9 Progress clients can connect to it. When
you are working in the V1 workspaces, you use a V8 Progress/RTB client. When
you are working in the V2 workspaces, you use a V9 Progress/RTB client (just as
you would without RTB).

The schema changes applied to the repository for V9 RTB do not harm V8 RTB’s
ability to operate against the repository

Conclusion
At some point in time, your V2 environment will be ready for production and you
can retire the V1 workspaces. As your development effort slowly changes to

6

focus on mostly the V2 application, you will find that it is easier to make all
changes in “V2Devel” and either assign the version to “V1Devel” (if possible) or
check out and patch the object in “V1Devel” with the same change.

This white paper described a process that must be followed with or without RTB.
RTB adds the accountability to the process to allow you to easily generate
information that may be impossible to acquire otherwise. You easily see what
the vendor changes and what changes you must merge, reducing the analysis
time to a fraction of what it would take without RTB.

