
1

Roundtable White Paper
Managing Customizations

Prerequisites
1. Read the entire Roundtable User's Guide with special attention to workspaces, workspace sources,

products, workspace modules, product modules, and object variants.
2. Read the white paper "Schema made easy" if you plan on customizing schema.

Object Variants Described

Customizations
Customizations typically consist of quick bug fixes or feature enhancements for a particular user. These
are tracked in Roundtable through custom product modules and custom workspaces (see "object
variants" in the Roundtable User's Guide). Objects are "flagged" as variants when they are assigned to a
custom product module.

For example
You divide your application into two workspace modules, "code" and "dict" (probably because you had a
subdirectory called "code" before Roundtable - it is sometimes easier to think of workspace modules as
pointers to directories). Your define a core product called "coreprod" with two product modules,
"corecode" and "coredict". These two product modules are mapped to the "code" and "dict" workspace
modules (see the Roundtable User's Guide for information on setting up products and modules). You
then define a second product to track customizations for "customer1" called "cust1prod" with two product
modules, "cust1code" and "cust1dict". You also map these two product modules to the "code" and "dict"
workspace modules.

You create two development workspaces: COREDEVEL for working on your core baseline, CUST1DEVEL
for working on customizations for "customer1". Your COREDEVEL workspace would have the "coreprod"
product and product modules sourced as primary. Your CUST1DEVEL workspace would have the
"cust1prod" product and product modules sourced as primary. You would also source the "coreprod"
product and modules from COREDEVEL. This is done so that you can import the core base-line
"coreprod" from COREDEVEL. All versioning will be done using the primary "cust1prod" product modules
(see below).

Creating the object variant
When you want to create a customization in the CUST1DEVEL workspace, you "move" the object from
the "corecode" product module to the "cust1code" product module (I recommend adding security so that
developers cannot check out objects still in the "corecode" product module). You move an object using
the same steps as creating a new object - when Roundtable finds the same object already in a different
product module, it will ask you if you are trying to move the object. The move process simply changes
which product module is assigned to the object and checks it out with version numbers unique to that
object in that module.

If the core product module and the custom product module are mapped to the same workspace module
(as in our example where "corecode" and "cust1code" are both mapped to the "code" workspace
module), the physical object does not actually move. Roundtable now knows the object is a variant since
it is in another module. When you change the object in COREDEVEL and import into CUST1DEVEL from

2

COREDEVEL, Roundtable will not overwrite the object variant. You no longer have to use separate
directories for variants.

Moving new changes/fixes forward into custom workspaces

The import list
After creating many changes in COREDEVEL, you typically mark a baseline by creating a release. You
then import that baseline into Test or QA areas (see the Roundtable user's Guide form more information
about releases and imports). You also want to move this baseline into your custom development
workspaces, either straight from COREDEVEL or from one of the test or production workspace further
down the chain. You do NOT want Roundtable to overwrite an object you customized with an object
changed in the core baseline.

When you build the import list, Roundtable automatically excludes objects that are in different product
modules between the two workspaces. If you highlight a customized object in the list, you can see in the
details that the object is in (using our example) the "corecode" product module in the source workspace
and in the "cust1code" product module in the target workspace. If you toggle the object to INCLUDE,
the object from the core baseline will be imported (the object is then back in the "corecode" product
module).

Release Report
A release report is a good tool for finding changes in the baseline that need to be merged into custom
objects. By default, the release report shows all objects changed between two releases. In Roundtable
V9.1C and above, there is an option on the release report to also show if the object has a variant in
another workspace, so that you know every change that must be merged into a variant.

You can also modify the release report in earlier version of Roundtable to automatically show all object
variants. The release report is provided in source form as <rtb install directory>/rtb/w/rtb_0405.w. Add
the following code just before the comment, " /* --- Find next object to process --- */", in the
“do_report” procedure:

/* GW find object variants. */
 DEFINE BUFFER B2rtb_object FOR rtb.rtb_object.

 FOR EACH B2rtb_object WHERE B2rtb_object.wspace-id <> Brtb_hist.wspace-id
 AND B2rtb_object.obj-type = Brtb_hist.obj-type:U
 AND B2rtb_object.object = Brtb_hist.object
 NO-LOCK:

 IF B2rtb_object.pmod <> Brtb_hist.pmod THEN DO:
 PUT " OBJECT VARIANT: workspace- "
 B2rtb_object.wspace-id
 "pmod - "
 B2rtb_object.pmod
 SKIP.
 END.
 END. /* FOR EACH B2RTB_OBJECT */

 /* --- Find next object to process --- */

This customization to the release report will show you every workspace that contains a custom version of
the object (just like the V9.1C report).

3

Merging customizations back into the core baseline

PCODE
After you have identified the objects that have been customized, you need to determine if the object
variant can be brought directly back into the core base-line or if the customizations must be merged into
the core object.

Typically, if the object has been changed in the core baseline since your customization, you must merge
the customizations to the core object. To do this in our example, you would check out (version) the
object in COREDEVEL and add the changes (use the differencing tools in Roundtable to compare the core
object to the object variant and find the differences). You then import the new object version into
CUST1DEVEL (or simply assign the object version if you don't want to bother creating a release and
importing). The object will be "excluded" in the import list by default since Roundtable sees it as a
custom variant. Toggle the object to "include" and RTB will remove the variant and assign (bring over)
the new object version that is in the core product module.

For example, you have V020000 of "program.p" in the "corecode" module in both COREDEVEL and
CUST1DEVEL. You then move the object to "cust1code" in the CUST1DEVEL workspace creating
V010000. Later, you check out "program.p" in COREDEVEL creating V020001 in the "corecode" product
module. There are now changes made in both the custom workspace and to core object. The change in
the core object is not in the customization. To merge the customization into the base-line, you would
version "program.p" in COREDEVEL to V020100 and modify it to include the changes from V010000 over
in "cust1code". You would then import V020100 forward into CUST1DEVEL, eliminating the custom
version from the custom baseline.

If the object has not changed in the core baseline, you could use the same method above. It may be
easier to "move" the object in CUSE1DEVEL from the "cust1code" product module to the "corecode"
product module, then check it in (the move checks out the object). You can then either reverse the
source from CUST1DEVEL to COREDEVEL and import it back to COREDEVEL, or simply assign the new
object version in the COREDEVEL workspace (the object is already in the "corecode" module).

Schema objects
You use the same method to merge schema objects back into the base-line. You must remember the
Roundtable rules of schema. Table objects are assigned to the workspace and are assigned to
databases. Field objects are assigned to the workspace and to tables.

A "version" of a database has a certain set of tables assigned to it. If V010000 of the "sports" database
has the "customer" (V010000) and "invoice"(V010000) tables assigned to it, then you check out sports
(V020000) and add the "order" (V010000) table, V020000 of sports now has three tables assigned to it.

If you then check out the "customer" table creating V010001 of the table, the sports database version
DID NOT CHANGE. It still has the same "set" of tables assigned to it; "customer", "invoice", and "order".
It is still at V020000.

Lets now lets apply this to our example case. You have Sports V010100 in the coredict product module
with the "customer" and "invoice" tables assigned to it . You move it to the "cust1dict" product module
in the CUST1DEVEL workspace creating V010000 (unique version numbers for this object in this module).
You then add the "order" table to it and check it in.

Back in COREDEVEL, you check out "sports" in the "coredict" module creating V010200. You then add
the "sales-rep" table and check it in. You have now both customized and modified the database. To
bring the order table into the core baseline, you cannot simply move it nor can you move just the table

4

object to the "coredict" product module. The table object must be moved from "cust1dict" to "coredict",
and the "sports" database must be checked out so that the table can be assigned to it.

You would check out the "sports" database in the COREDEVEL workspace (currently assigned the
"coredict" product module) creating V010300. You would move the "order" table object from the
"cust1dict" product module to the "coredict" product module (remember that "cust1dict" is not sourced in
COREDEVEL). You can then assign the "order" table to the "sports" database (see the Roundtable User's
Guide for directions on expanding databases and assigning tables).

The exact same information is true for the relationship of field objects to table objects.

