

Working with .NET UI and
Roundtable TSMS

Roundtable Development Team

TUGBOAT

SOFTWARE

Table of Contents

1 Introduction ... 2

2 The Files ... 2

3 Managing .resx Files ... 2

4 Managing the assemblies.xml File ... 2

5 Conclusion ... 6

 2

1 Introduction
The addition of .NET UI and the OpenEdge Visual Designer in OpenEdge Architect

10.2A introduces two new file types that should be managed as part of application

lifecycle management activities. This white paper provides recommendations for

managing these files using Roundtable TSMS and the Roundtable TSMS plug-in for

OpenEdge Architect/Eclipse.

2 The Files
When using .NET controls in your application, two new files come into play: .resx files

and the assemblies.xml file. A .resx file is an XML file that contains instance-specific

settings for controls used by an ABL Form. The assemblies.xml file is an assembly

references file that is required to compile and run an ABL class or procedure that

instantiates a .NET class or references any .NET object type that is not loaded by default.

For each ABL Form that contains or one or more .NET controls, OpenEdge will

automatically generate a .resx file containing the instance-specific properties for those

controls. OpenEdge Architect also automatically updates the .resx file when any of the

properties are changed.

The assemblies.xml file pertains to an OpenEdge project. During development or at

runtime, there will be a single assemblies.xml file for your OpenEdge project.

3 Managing .resx Files
For each ABL class that contains a .NET control, a .resx file is generated with the same

base name and in the same location as the ABL class. For example, if you add a .NET

control to MyForm.cls, OpenEdge Architect will automatically create the file

MyForm.resx in the same directory.

A multi-part PCODE Object Subtype should be created to manage these file pairs as a

single object. The first part of the Subtype will have a "cls" extension, and the second

part will have a "resx" extension. Using this Subtype for any .NET forms will ensure that

both the manual changes to the ABL class and the corresponding automatic changes to

the .resx file will get stored together when checking in modifications to the object.

4 Managing the assemblies.xml File

4.1 Using the Roundtable TSMS Plug-in

Since one assemblies.xml file is used by the OpenEdge project, it is best if there is one

shared instance of the file at each stage of development. This will prevent the challenges

of having to merge differences and manage conflicts from privately-maintained copies.

Using Roundtable TSMS, the assemblies.xml should be an object managed in the

Roundtable Workspace.

 3

Although the assemblies.xml file is automatically updated as new assemblies are

required, it is used by the AVM, and not related to a specific form class. The

assemblies.xml file should also be checked out when performing modifications to UI that

will change the contents of the assemblies.xml file.

Before creating the first .NET form, be sure to create the aforementioned PCODE Object

Subtype described in the previous section, and a PCODE Object Subtype for XML files

(if you do not already have one). Also, you should create an "empty" assemblies.xml file

in the development Workspace.

Follow the steps below applicable to your OpenEdge Architect version to create an

"empty" assemblies.xml file in the development Workspace using the Roundtable plug-

in.

4.1.1 Creating assemblies.xml Using OpenEgde Architect 10.2B

1. Create a project from the appropriate repository Workspace.

2. Create a new Central Task, and set it as the active Task.

3. Right-click the project in the Resources view and select Properties from the context

menu.

4. Select the OpenEdge/Assemblies property page.

5. Uncheck the Use Default Location option, and choose the Workspace button to locate

the appropriate module (as determined by your organization) subfolder of the active

Task’s folder in the project.

6. Click OK to save the location.

7. Using the RTB Imports view, import the new assemblies.xml file as a Roundtable-

managed object of the aforementioned XML Code Subtype.

8. Once imported, return to the project’s OpenEdge/Assemblies properties page, and

change the location of the assemblies.xml file to the absolute path – including the

repository Workspace root path – of the folder where the new assemblies.xml object

file resides.

NOTE: For any new project created from a Roundtable Workspace, you will need to

change the new project’s assemblies file location to reference the physical

assemblies.xml file that is associated with the Roundtable Workspace from which the

new project was created.

4.1.2 Creating assemblies.xml Using OpenEgde Architect 10.2A

1. Create a project from the appropriate repository Workspace.

2. Create a new Central Task, and set it as the active Task.

3. Create a new Object named "assemblies.xml" (sans quotes) of the aforementioned

XML Code Subtype in the appropriate Module (As determined by your organization).

4. Edit the new object , inserting the following text into it:

 <?xml version="1.0" encoding="UTF-8"?>

 4

<references/>

5. Save and close the object.

6. Add the following parameter to the project AVM startup parameters:

-assemblies path_to_assemblies.xml

where path_to_assemblies.xml is the absolute path – including the repository

Workspace root path – of the folder where the new assemblies.xml file resides.

For example:

 -assemblies //devserver/devshare/rtb/workspaces/devel

7. Restart the project AVM.

NOTE: You will need to modify the project AVM startup parameters to include the -

assemblies parameter for any new project created from the Roundtable Workspace.

The -assemblies parameter must reference the physical assemblies.xml file that is

associated with the Roundtable Workspace from which the new project was created.

4.2 Using the Roundtable TSMS Windows GUI client

By default, the .NET classes recorded in an assemblies.xml file are loaded at session

startup – either from the assemblies.xml file in the “Start in” directory, or a path

specified by the -assemblies session startup parameter. Some Roundtable TSMS users

have asked about managing Workspace-specific assemblies.xml files using the

Roundtable TSMS Windows GUI client. As Releases are promoted through the workflow

via Imports, it is customary to perform a Selective Compile in the receiving Workspace

after the Import. If the selected Workspace contains objects that use non-default .NET

classes that are not in the startup assemblies.xml file, those Workspace objects will not

compile, since the referenced classes will not have been loaded into the OpenEdge

session.

The challenge, then, is how to load additional .NET classes from an assemblies.xml file

in the selected Workspace during the same OpenEdge session. There is a solution

available using one of Roundtable TSMS’s event hooks to dynamically load the .NET

classes in an assemblies.xml residing in root directory of the selected Workspace.

By intercepting the changeWorkspace event hook (see rtb_events.p), you can pass the

Pother parameter value (the ID of the selected Workspace) to the code listed in Figure 1

below. The code will cause the OpenEdge session to load the .NET classes listed in an

assemblies.xml file located in the selected Workspace's root folder.

IMPORTANT – There are two significant caveats with this code:

1. Although it will load .NET classes (if not already loaded) listed in an assemblies.xml

file, it will not unload classes already loaded. Consequently, if an object in the

selected Workspace references a .NET class that is not listed in the assemblies.xml

file in that Workspace, but the referenced .NET class is in the assemblies.xml file in

 5

a previously selected Workspace (during the same session), the object will compile

without error, since the referenced .NET class has already been loaded into memory.

You will not know from the compile results that the assemblies.xml in that

Workspace is "out-of-synch" with the .NET classes referenced by code in the

selected Workspace.

For example, suppose that the assemblies.xml file in Workspace “Dev” includes

.NET class “A”. When Workspace “Dev” is selected. Class “A” will be loaded into

memory. Subsequently, Workspace “Test” is selected, but the assemblies.xml file in

Workspace “Test” does not include class “A”. If an object in Workspace “Test”

references class “A”, it will compile without error, since class “A” has already been

loaded.

2. The Progress.ClrBridge.AssemblyStore class used here is undocumented and

unsupported, and is therefore subject to change in future OpenEdge releases, without

notification.

Given these uncertainties, you may decide that it is safer to maintain a single,

assemblies.xml file – apart from Roundtable control – that is shared by all Workspaces,

located either in the startup directory, or a location specified by the -assemblies session

startup parameter.

/*

 Dynamically load .NET classes from assemblies.xml file in the root folder

 of the specified Workspace.

 The drawback to this method is that any assemblies that are currently

 loaded will NOT be unloaded.

*/

USING Progress.ClrBridge.AssemblyStore FROM ASSEMBLY.

DEFINE INPUT PARAMETER pcWspace AS CHARACTER NO-UNDO. /*Workspace ID */

DEFINE VARIABLE cWorkspacePath AS CHARACTER NO-UNDO.

DEFINE VARIABLE hWorkspaceSDO AS HANDLE NO-UNDO.

DEFINE VARIABLE assemblyStore AS Progress.ClrBridge.AssemblyStore NO-UNDO.

IF pcWspace <> "" THEN DO:

 assemblyStore = Progress.ClrBridge.AssemblyStore:Instance.

 /* Get handle to Workspace SDO */

 PUBLISH "evRtbGetWsSDOHandle" (OUTPUT hWorkspaceSDO).

 /* Get the path for the selected Workspace */

 cWorkspacePath = DYNAMIC-FUNCTION('fnRtbGetWorkspacePath':U

 IN hWorkspaceSDO, pcWspace).

 /* Set assemblies.xml path to Workspace root folder */

 assemblyStore:AssembliesPath = ENTRY(1, cWorkspacePath).

 /* Load the .NET classes listed */

 assemblyStore:Load() NO-ERROR.

Figure 1. Code to dynamically load assemblies.xml

 6

 DELETE OBJECT assemblyStore.

END.

5 Conclusion
Although the addition of .NET UI to ABL introduces new files to application

development and deployment, Roundtable TSMS and the Roundtable TSMS Plug-in can

be used to effectively manage these files and ensure their promotion through the

development lifecycle.

