Roundtable White Paper

Double Compile

Summary

This white paper describes how to set up Roundtable to copy an object to a second machine and compile it
before performing the standard workspace compilation. It was prompted by the request for a way to have
RTB automatically perform a UNIX compile on an object every time it is compiled in an NT workspace. It
requires the use of RTB V9.1B or higher.

The AppServer Interface APl and standard RTB client hooks are utilized in this example. The AppServer
Interface Tool is a utility designed to facilitate copying of objects to a directory on an AppServer machine.

It requires the installation of the Progress AppServer. By copying one of RTB’s directories into the
AppServer’'s ProPath, RTB is able to use the AppServer to move code to the AppServer machine. The code is
passed via a Progress Temp-Table, eliminating the need for OS-Copy or FTP. In this case, the AppServer
session must be connected to the RTB repository. See the RTB User’s Guide and the files in “<rtb
install>/rtb/appsrvr” for more information on the RTB AppServer Interface.

The Double Compile is a three-part process. First, the OBJECT-COMPILE-BEFORE hook is intercepted in the
RTB GUI client. If the object should be moved to and compiled on the UNIX machine, the AppServer
Interface API is called from the hook to move the object. Third, a hook in the AppServer Interface Tool on
the AppServer then is intercepted and used to compile the object in the AppServer Session.

First — Intercept the “OBJECT-COMPILE-BEFORE” Hook

This part is easy. Add the following block to your copy of “<rtb install>/rtb_evnt.p” and recompile it.
Rtb_evnt.p is the standard RTB hook procedure. When the event passed to it is “OBJECT-COMPILE-
BEFORE”, we know to move and compile the object using the context accessible to the hook.

/*
Doubl e Conpil e Exanpl e
Call rtb_nsrv.p to nove object with the AppServer Interface APl and
conmpile on the AppServer
*/
| F p_event = "OBJECT- COWPI LE- BEFORE" THEN
RUN nmyhacks/p/rtb_msrv.p (I NPUT p_context).

Second — Check and Move the Object

Place the following “rtb_msrv.p” file in a directory called “myhacks/p” off of your Roundtable install directory
(or anywhere in your ProPath). Change the value of Mappserver to match your environment. Mremote-path
reflects the root directory for your application on the AppServer machine. The .p checks to see if the object

needs to be processed. If so, it connects to the AppServer using the Progress AppServer Utils then calls the

RTB AppServer Interface API to move the object.

/*
FILE: rtb_nmsrv.p

DESCRI PTI ON:
Move file to Appserver.

I nvoke from the "OBJECT- COVWPI LE- BEFORE" hook:

| F p_event = "OBJECT- COVPI LE- BEFORE" THEN
RUN nmyhacks/ p/rtb_noveserver.p (I NPUT p_context).

Thi s exanpl e connects to the AppServer fromw thing this .p then
di sconnects. If this process is going to be run alot, it would be
better to connect in the select workspace hook and | eave the
connection open until another workspace is sel ected.
*/

DEFI NE | NPUT PARAMETER Pobj -recid AS CHARACTER NO- UNDO

DEFI NE VARI ABLE MAppHdI AS HANDLE NO- UNDO.
DEFI NE VARI ABLE Merr or AS CHARACTER NO- UNDO.
DEFI NE VARI ABLE Mappserver AS CHARACTER NO- UNDO.

DEFI NE VARI ABLE M enpt e- pat h AS CHARACTER NO- UNDO.

/* Change to match your AppService nane */
ASSI GN Mappserver = "uni x"
M enot e-path = "/work/appserver"

/[* Progress AppServer Uils */
{adeconmt appserv.i}

/*
Add code here to check if the object should be noved and conpil ed on
the AppServer. For exanple, you nay nove only objects in a specific

modul e or of a specific subtype. |If the object should not be noved,
sinmply | eave the procedure.
*/

/* Connect to the AppServer */
RUN appServer Connect I N appSrvUtils
(I NPUT Mappserver, [* Application Service */

I NPUT NO, /[* Security */
I NPUT "™, /* Info */
OUTPUT MAppHdI) . /* Handl e to AppServer */

RUN rtb/appsrvr/rtb_assnd.p
(I NPUT Pobj -recid,
I NPUT MApphdl
I NPUT M enpt e- pat h,
I NPUT NO,
OUTPUT Merror).

IF Merror <> "" THEN
MESSAGE Merror VI EWAS ALERT- BOX.

RUN appServerDi sconnect | N appSrvUtils (1 NPUT Mappserver).

Third — Compile the file using the “OBJECT-WRITE” hook

The programs running on the AppServer also provides hooks. Add the following block to “rtb_asevnt.p” on
the AppServer to intercept the move of an object then pass rtb_comp2.p the context so it can compile the
file.

/* Conpile object after it has been noved */
IF p_event = "object-write" THEN
RUN rtb_conmp2. p(1 NPUT p_cont ext,
| NPUT p_ot her).

Compiling the object is the trickiest part. You could simply execute the compile command against the file
that was moved to the machine. This example makes sure that the RTB repository is connected before
continuing. It then finds the object and ver records in the repository. Using the fetched information, it
determines the workspace name so as to connect to the proper workspace databases (I recommend
removing that part and connecting to the workspace databases in the AppServer = you would use separate
AppServer partitions for each workspace). It then traps the compiler output to a file in case the program
does not compile. If any errors are encountered in this process, they are sent to a .log file.

As is, these programs would return and the RTB GUI client would continue on and compile the workspace
object. You would have to check the .log file to see how things went. It would be better to add a flag to
the repository, mark it as false if the compile fails, then cancel the workspace compile in the “OBJECT-
COMPILE-BEFORE” hook that originally started this process. That is why we used the “BEFORE” hook.
When the workspace compile is cancelled, the object status remains as “compile required”.

/*
FI LE:
rtb_conmp2.p
DESCRI PTI ON:

Conpil e an object that has just been noved to the AppServer with the
RTB AppServer Interface Tool.

If the AppServer Interface Tool is being called through it's APl from
the before object conpile hook, the "best" way to handle failed conpiles
woul d be to set a flag in the database that the conpile failed then
cancel the regular conpile. This exanple just wites to a "rtbconp.|og"
file in the current directory.

Make sure the agent that noves the code is also connected to the repository
so that the | ookups have tables to | ook-up.

WARNI NG:

When conpiling an object RTB assunes the include files are current. I|f
you are batch noving objects

*/

DEFI NE | NPUT PARAMETER Pobj -recid AS CHARACTER NO- UNDO.
DEFI NE | NPUT PARAMETER Pfil e- nane AS CHARACTER NO- UNDO FORMAT "x(60)".

DEFI NE VARI ABLE Merr or AS LOG CAL NO- UNDO.
DEFI NE VARI ABLE Mwar ni ng AS LOG CAL NO- UNDO.
DEFI NE VARI ABLE Merror-nsg AS CHARACTER NO- UNDO.
DEFI NE VARI ABLE Merror-1line AS CHARACTER NO- UNDO.
DEFI NE BUFFER Brtb_obj ect FOR rtb.rtb_object.

DEFI NE BUFFER Brtb_ver FOR rtb.rtb_ver.

DEFI NE STREAM Sl og.

[* Qutput file to report any issues */
OUTPUT STREAM Sl og TO c:\work\rtbconp. LOG APPEND.

/* Make sure the RTB database is connected */
| F NOT CONNECTED("rtb") THEN DO
PUT STREAM Sl og TODAY STRI NG Tl ME, " HH: MMt SS") SKI P
"Logical DB RTB not connected" SKIP.
OUTPUT STREAM Sl og CLGSE.
LEAVE.
END.

/* Find rtb_ver record to figure out if the object is conpilable */
FIND Brtb_obj ect WHERE

RECI D(Brtb_obj ect) = | NTEGER(Pobj -reci d) NO LOCK NO ERROR.
FIND Brtb_ver OF Brtb_object NO LOCK NO ERROR

/* The rtb_ver record should ALWAYS be avail able from here */
| F NOT AVAI LABLE Brtb_ver THEN DO
PUT STREAM Sl og TODAY STRI NG Tl ME, " HH: Mt SS") SKI P
Pobj -recid SKI P
"REPO ERROR! : Could not find object in the repository"” SKI P.
OUTPUT STREAM Sl og CLOSE.
LEAVE.
END.
ELSE DO
/[* Don't conpile unless the object is marked conpil able */
I F Brtb_ver. Conpil es =FALSE THEN DO
OUTPUT STREAM S| og CLOSE.
LEAVE.
END.

/*

Dat abase connection tine!!! It is easier just to put the
connection information here rather than | ook up the paraneters
in the repo - besides, you may be nanagi ng the connections for
the wor kspace dat abases manual |y (bl anki ng out the connection
paranms for the PDBASE objects in the workspace).

It would be better just to have an Appserver partition dedicated
to each workspace so that the workspace DB connections can be

pl aced on the Broker startup line,

*/

CASE Brtb_object.wspace-id:
WHEN "devel " THEN DO
CONNECT -db c:\work\ denp9\ denpdat a\ devel \ sports. db - RO NO- ERROR.
END.
END CASE.

[* Tenporary output file for the conpile error nessages */
OUTPUT TO rtberror.LOG NO ECHO KEEP- MESSAGES.

[* Conpile the file */
COWPI LE VALUE(Pfil e-nane) SAVE.
OUTPUT CLOCSE.

ASSI GN Merror
Mwar ni ng

COWPI LER: ERRCR
COVPI LER: WARNI NG.

/* disconnect the workspace DBs --- */
DI SCONNECT sports.

/*

Put any error nessages in log file - the best thing would be to set a
flag in the repository so that the before conpile hook can cancel the
standard conpile if it called the AppServer Interface API

*/

I F Mwvarning OR Merror THEN DO
/* Populate Merror-nsg with the conpiler errors */
I NPUT FROM rt berror. LOG
REPEAT:
| MPORT UNFORMATTED Merror-1Iine.
ASSI GN Merror-nmsg = Merror-nsg + Merror-1line.
END.
I NPUT CLOCSE.

/* output the conpiler errors to the log file */
PUT STREAM Sl og TODAY STRI NG Tl ME, " HH: MMt SS") SKI P

Pfil e-nane SKI P.
PUT STREAM Sl og UNFORMATTED Merror - nsg SKI P.
OUTPUT STREAM Sl og CLOSE.

LEAVE.
END. /* if Mmarning or Merror */

END. /* else do (if not available Brtb_ver)*/

