
Roundtable Total Software Management System

Roundtable
User's Guide

(Windows)

By Tugboat Software

Copyright 2003 by Tugboat Software Corporation

Licensed by Ledbetter & Harp LLC

Tugboat Software Corporation software products are copyrighted and all rights are reserved
by Tugboat Software Corporation. This manual is also copyrighted and all rights are
reserved. This manual may not, in whole or in part, be copied, photocopied, translated, or
reduced to any electronic medium or machine-readable form without prior consent, in writing,
from Tugboat Software Corporation.

The information in this document is subject to change without notice, and Tugboat Software
Corporation assumes no responsibility for any errors that may appear in this document.

Microsoft Windows is copyrighted by Microsoft Corporation. Microsoft is a registered
trademark of Microsoft Corporation. Windows is a trademark of Microsoft Corporation.

Progress is a registered trademark of Progress Software Corporation.

All company and product names are the trademarks or registered trademarks of their
respective companies.

Tugboat Software Corporation
3300 Irvine Avenue
Suite 288
Newport Beach, CA 92660-3122 Product Code 4496;91D

Contents

Preface.. xiii
Purpose... xiii
Audience ... xiii
Organization of This Guide ... xiii
Typographical Conventions ..xiv

Software Configuration Management..1-1
1.1 Introduction.. 1-1
1.2 Exploiting the Opportunity.. 1-2
1.3 Principal SCM Activities... 1-3
1.4 Configuration Identification .. 1-3

1.4.1 SCM and the Development Cycle.. 1-5
1.4.2 Configuration Item Identification .. 1-8
1.4.3 Configuration Hierarchy: Product Modules and Workspaces.................................. 1-9

1.5 Configuration Control... 1-13
1.5.1 Task Management... 1-15

1.6 Change Control ... 1-15
1.7 Configuration Auditing ... 1-16

1.7.1 Functional Baseline Audit Checklist... 1-17
1.7.2 Allocated Baseline Audit Checklist .. 1-17
1.7.3 Design Baseline Audit Checklist .. 1-18
1.7.4 Alpha Baseline Audit Checklist .. 1-18
1.7.5 Beta Baseline Audit Checklist.. 1-18
1.7.6 Product Baseline Audit Checklist... 1-19

1.8 Configuration Status Accounting ... 1-20
1.9 SCM Information Flow... 1-20
1.10 Benefits of SCM... 1-21
1.11 Workspace Networks... 1-21
1.12 SCM for Product Releases .. 1-22
1.13 SCM for Incremental Deployment.. 1-24
1.14 SCM for Custom Variant Deployment.. 1-27

Roundtable User’s Guide

iv

1.15 Distributed Development.. 1-29
1.15.1 Sites and Ownership.. 1-29
1.15.2 Deployments and Partner Site Replication .. 1-30
1.15.3 Receipt Workspace ... 1-30
1.15.4 Customers Doing Development... 1-30
1.15.5 Custom Product Modules .. 1-33
1.15.6 Distributed Development Scenario # 1 .. 1-33

1.16 Distributed Development Scenario # 2 .. 1-35

The Tabletop .. 2-1
2.1 Introduction.. 2-1
2.2 Roundtable Tabletop ... 2-2
2.3 Views ... 2-3

2.3.1 Module View .. 2-4
2.3.2 Task View .. 2-5
2.3.3 Xref View ... 2-6
2.3.4 Where Used View.. 2-8
2.3.5 Version List View ... 2-10
2.3.6 Informal Object Xref... 2-12
2.3.7 Recent Views... 2-14

2.4 Object Properties Window... 2-15
2.4.1 Spec Folder ... 2-16
2.4.2 Config Folder ... 2-17
2.4.3 Note Folder .. 2-17
2.4.4 Task Folder.. 2-18
2.4.5 DBase Folder... 2-18
2.4.6 Table Folder... 2-19
2.4.7 Field Folder.. 2-19

2.5 Common Operations from the Tabletop.. 2-19
2.5.1 Creating a Task ... 2-21
2.5.2 Finding an Object... 2-21
2.5.3 Loading an Object into AppBuilder Directly from the Tabletop.............................. 2-22
2.5.4 Loading an Object from AppBuilder... 2-23
2.5.5 Loading an Object into a Procedure Editor Window Directly from the Tabletop ... 2-23
2.5.6 Loading an Object from a Procedure Editor Window .. 2-23
2.5.7 Opening Non-Progress Objects... 2-24

Roundtable Administration... 3-1
3.1 Introduction.. 3-1
3.2 Shortcut Properties.. 3-2
3.3 Starting Roundtable... 3-2
3.4 Exiting Roundtable...3-2
3.5 Roundtable in the Windows Registry... 3-3
3.6 User Preferences... 3-4
3.7 Configuration Hierarchy... 3-6

Contents

v

3.7.1 Application Group Directories .. 3-7
3.7.2 Directories by Component Type .. 3-8
3.7.3 Directories by Application Group and Component Type.. 3-9
3.7.4 Using Subtypes to Extend the Configuration Hierarchy... 3-11

3.8 Products .. 3-13
3.8.1 Products Window Description.. 3-13
3.8.2 Adding a Product ... 3-14
3.8.3 Editing a Product Description .. 3-14
3.8.4 Deleting a Product ... 3-15
3.8.5 Product Report... 3-15
3.8.6 Adding a Product Module .. 3-16
3.8.7 Editing a Product Module Description.. 3-17
3.8.8 Deleting a Product Module .. 3-17
3.8.9 Product Module Report.. 3-18

3.9 Workspace Module Definitions.. 3-19
3.9.2 Adding a Workspace Module Definition... 3-20
3.9.3 Editing a Workspace Module Definition... 3-21
3.9.4 Deleting a Workspace Module Definition... 3-21

3.10 Subtypes .. 3-22
3.10.1 Code Subtypes Window Description ... 3-22
3.10.2 Subtype Theory.. 3-26
3.10.3 Subtype Example — Part I .. 3-26
3.10.4 Subtype Example — Part II ... 3-26
3.10.5 Subtype Example — Part III .. 3-27
3.10.6 Adding a Subtype... 3-28
3.10.7 Editing a Subtype or Subtype Part ... 3-28
3.10.8 Deleting a Subtype... 3-29
3.10.9 Code Subtypes Report .. 3-29

3.11 Site Information.. 3-30
3.12 Security .. 3-31

3.12.1 User Maintenance Window Description... 3-31
3.12.2 Adding a User .. 3-32
3.12.3 Editing a User .. 3-32
3.12.4 Deleting a User .. 3-33
3.12.5 Changing Your Password .. 3-34
3.12.6 Group Access Window Description ... 3-34
3.12.7 Adding a Group Access Code ... 3-35
3.12.8 Editing a Group Access Code.. 3-36
3.12.9 Deleting a Group Access Code ... 3-36
3.12.10 Workspace Security Window Description.. 3-37
3.12.11 Adding Workspace User Access Assignments ... 3-37
3.12.12 Editing Workspace User Access Assignments ... 3-38
3.12.13 Deleting a Workspace User Access Assignment .. 3-40
3.12.14 Viewing Current Privileges... 3-40

3.13 Repository Dump and Load ... 3-41
3.14 Defining Your Application... 3-42
3.15 Loading Multiple Workspaces.. 3-43

Roundtable User’s Guide

vi

3.15.1 Pre-Prod .. 3-43
3.15.2 Test.. 3-44
3.15.3 Devel.. 3-44
3.15.4 Setting Up the Workspace Flow .. 3-45

Workspaces.. 4-1
4.1 Introduction.. 4-1
4.2 Workspace Maintenance... 4-1

4.2.1 Guidelines for Workspace Planning .. 4-2
4.2.2 Workspace Window Description ... 4-3
4.2.3 Adding a Workspace ... 4-5
4.2.4 Editing a Workspace.. 4-6
4.2.5 Deleting a Workspace ... 4-7
4.2.6 Hiding a Workspace .. 4-7
4.2.7 Archiving a Workspace.. 4-8
4.2.8 Viewing Workspace Event History... 4-8

4.3 Workspace Reports... 4-10
4.3.1 Printing Reports ... 4-11
4.3.2 Changes Report... 4-11
4.3.3 Workspace Event History Report .. 4-12
4.3.4 Workspace Report... 4-14
4.3.5 Workspace Differences Report ... 4-14

4.4 Workspace Sources .. 4-15
4.4.1 Workspace Sources Window Description ... 4-17
4.4.2 Adding a Workspace Source... 4-18
4.4.3 Deleting a Workspace Source... 4-19

4.5 Editing Workspace Module Parameters.. 4-19
4.6 Object Variants .. 4-20

4.6.1 Object Repository .. 4-21
4.6.2 Versions vs. Variants ... 4-21
4.6.3 Example of Object Variations .. 4-22

4.7 Database Schema Updates... 4-22
4.7.1 Database Integrity Check Report... 4-23
4.7.2 What to Do when the Physical Schema Is Out of Synchronization 4-24
4.7.3 Schema Update Window Description.. 4-24
4.7.4 Unapplied Changes Report ... 4-25
4.7.5 Building the Schema Update List... 4-26
4.7.6 Database Storage Areas ... 4-28
4.7.7 Toggle Index to Activate/Deactivate .. 4-28
4.7.8 Skipping a List Item ... 4-29
4.7.9 Data Procedures.. 4-29
4.7.10 Creating Data Procedures ... 4-30
4.7.11 Updating Physical Schema.. 4-31
4.7.12 Deleting the Schema Update List .. 4-31

4.8 Releases.. 4-32
4.8.1 Releases Window Description... 4-32

Contents

vii

4.8.2 Adding a Release .. 4-33
4.8.3 Editing a Release... 4-34
4.8.4 Deleting a Release .. 4-34
4.8.5 Release Report.. 4-34

4.9 Imports... 4-36
4.9.1 Building the Import Control Table .. 4-37
4.9.2 Import Analysis Report .. 4-39
4.9.3 Toggling the Import Status .. 4-39
4.9.4 Compare Button... 4-40
4.9.5 Import... 4-40
4.9.6 Deleting the Import Control Table.. 4-40

4.10 Workspace Populate Process ... 4-41
4.11 Build Names Table... 4-41
4.12 Deployments .. 4-42

4.12.1 Roundtable Deployments Window Description ... 4-44
4.12.2 Roundtable Deployments Window Deploy Folder ... 4-45
4.12.3 Adding a Remote Site.. 4-46
4.12.4 Editing a Remote Site .. 4-47
4.12.5 Deleting a Remote Site.. 4-47
4.12.6 Printing the Site Report.. 4-48
4.12.7 Adding a Deployment .. 4-48
4.12.8 Editing a Release Number and Directory .. 4-49
4.12.9 Deleting a Work-in-process (WIP) Deployment .. 4-49
4.12.10 Building a Schema Update List.. 4-50
4.12.11 Making an Update Directory .. 4-51
4.12.12 Updating at a Remote Site... 4-52
4.12.13 The Update Process.. 4-56
4.12.14 Completing a Deployment ... 4-57

4.13 Procedure Updates and Compiles on Remote Sites ... 4-57
4.14 Database Schema Updates on Remote Sites ... 4-57

4.14.1 Schema Update Process... 4-58
4.14.2 Creating and Editing the schema.pf File.. 4-60
4.14.3 Schema Release Rules ... 4-61
4.14.4 Updating Database Schemas Dialog Box ... 4-61
4.14.5 Database Copies ... 4-62
4.14.6 Deploying Both a Full and Incremental Schema Update 4-63

Task Management ... 5-1
5.1 Introduction.. 5-1
5.2 What Is Task Management? ... 5-2

5.2.1 Benefits of Task Management... 5-2
5.2.2 How Objects Relate to Task Management .. 5-2

5.3 Task Maintenance ... 5-3
5.3.1 Tasks Window Description .. 5-3
5.3.2 Share Status .. 5-5
5.3.3 Adding a Task.. 5-6

Roundtable User’s Guide

viii

5.3.4 Editing a Task .. 5-7
5.3.5 Deleting a Task.. 5-7
5.3.6 Selecting a Task .. 5-7
5.3.7 Completing a Task... 5-8
5.3.8 Task Report ... 5-9
5.3.9 Object Orphans in Task Report ... 5-10

5.4 Task Activities.. 5-10
5.4.1 Checking Out an Object .. 5-11
5.4.2 Creating an Object Variant .. 5-12
5.4.3 Checking In an Object ... 5-13
5.4.4 Listing Objects in a Task ... 5-13
5.4.5 Changing the Share Status of Objects .. 5-14
5.4.6 Promoting Task Objects .. 5-15
5.4.7 Finding a Task ... 5-15
5.4.8 Selecting No Current Task .. 5-16

5.5 Task Groups Maintenance .. 5-16
5.5.1 Task Groups Window Description ... 5-16
5.5.2 Adding a Task Group... 5-17
5.5.3 Editing a Task Group Directory.. 5-18
5.5.4 Deleting a Task Group... 5-18
5.5.5 Adding a Task Group Assignment... 5-19
5.5.6 Deleting a Task Group Assignment... 5-19

5.6 Task Notations... 5-20

Objects.. 6-1
6.1 Introduction.. 6-1
6.2 The Repository .. 6-2

6.2.1 Object Versioning and Tasks... 6-2
6.3 Object Properties Window Folders.. 6-3

6.3.1 Spec Folder Description .. 6-3
6.3.2 Task Folder Description... 6-4
6.3.3 Note Folder Description ... 6-5
6.3.4 Version Note Dialog... 6-5

6.4 PCODE Objects... 6-6
6.4.1 Config Folder Description .. 6-6
6.4.2 Adding a PCODE Object ... 6-8
6.4.3 Object Name Aliasing .. 6-9
6.4.4 Editing the Config Folder ... 6-10
6.4.5 Editing a PCODE Object.. 6-10
6.4.6 Unlocking Objects.. 6-11
6.4.7 WRX Files.. 6-11
6.4.8 SmartObject Cross Referencing.. 6-12

6.5 DOC Objects ... 6-12
6.5.1 Adding a DOC Object .. 6-12

6.6 Schema Objects .. 6-13
6.6.1 Domains... 6-14

Contents

ix

6.6.2 Schema Object Versions ... 6-15
6.7 PDBASE Objects... 6-15

6.7.1 Dbase folder Description ... 6-16
6.7.2 Adding a PDBASE Object.. 6-17
6.7.3 PDBASE for DataServer Database ... 6-18
6.7.4 DataServer Schema Change Restrictions... 6-19
6.7.5 Editing the Dbase folder .. 6-20
6.7.6 Adding an Alias.. 6-20
6.7.7 Deleting an Alias.. 6-21
6.7.8 Adding a Database Sequence ... 6-21
6.7.9 Edit a Database Sequence .. 6-22
6.7.10 Delete a Database Sequence.. 6-23
6.7.11 Load Progress Schema ... 6-23
6.7.12 PDBASE Object Report ... 6-23
6.7.13 Database Definition Report.. 6-24
6.7.14 Integrity Check Report ... 6-25

6.8 PFILE Objects ... 6-25
6.8.1 Table Folder Description.. 6-26
6.8.2 Adding a PFILE Object .. 6-27
6.8.3 Editing the Table Folder... 6-27
6.8.4 Adding Table Triggers ... 6-28
6.8.5 Deleting a Trigger .. 6-28
6.8.6 PFILE Object Report.. 6-29
6.8.7 Table Definition Report .. 6-30

6.9 PFIELD Objects... 6-30
6.9.1 Field Folder Description... 6-31
6.9.2 Adding a PFIELD Object.. 6-32
6.9.3 Editing the Field Folder.. 6-33
6.9.4 Changing the Data Type or Extent of a Field... 6-33
6.9.5 Editing a Field Validation ... 6-33
6.9.6 Editing a Field View As Phrase.. 6-34
6.9.7 PFIELD Object Report ... 6-34

6.10 Logical Schema Manager Window .. 6-34
6.10.1 Table Assignment.. 6-36
6.10.2 Deleting a Table Assignment... 6-37
6.10.3 Changing Local Table Name ... 6-37
6.10.4 Field Assignments ... 6-38
6.10.5 Assigning a Field ... 6-39
6.10.6 Editing a Field Assignment .. 6-39
6.10.7 Deleting a Field Assignment .. 6-40
6.10.8 Indices ... 6-40
6.10.9 Adding an Index... 6-42
6.10.10 Deleting an Index... 6-42
6.10.11 Renaming an Index.. 6-43

6.11 Assigning an Object ... 6-43
6.12 Object Reports ... 6-44

6.12.1 Versions in Product Module Report ... 6-45

Roundtable User’s Guide

x

6.12.2 Versions in Product Module Report Window... 6-45
6.12.3 Printing the Versions in Product Module Report.. 6-47
6.12.4 Versions in Workspace Report.. 6-47
6.12.5 Versions in Workspace Report Dialog Box Description 6-47
6.12.6 Printing the Versions in Workspace Report... 6-48
6.12.7 Xref Report .. 6-48
6.12.8 Where Used Report... 6-48
6.12.9 Object Usage Report ... 6-49
6.12.10 Call Diagram Report .. 6-50
6.12.11 Unused Objects Report ... 6-50
6.12.12 External Objects Report .. 6-51
6.12.13 Index Usage Report... 6-51
6.12.14 Repository Check Report... 6-51

Tools ... 7-1
7.1 Introduction.. 7-1
7.2 Group Check out Utility.. 7-2

7.2.1 Group Check out Window.. 7-2
7.2.2 Select Changed Button.. 7-4

7.3 Compiling Tools... 7-4
7.3.1 Compiling Rules... 7-5
7.3.2 Compile Object Without Xref ... 7-6
7.3.3 Compile with Xref... 7-6
7.3.4 Selective Compile Dialog Box Description... 7-7
7.3.5 Selective Compiles .. 7-8

7.4 Module Load.. 7-9
7.4.1 Starting Module Load... 7-10
7.4.2 The Module Load Window... 7-10
7.4.3 Changing Code Properties .. 7-15
7.4.4 Loading the Source Files ... 7-16

7.5 Test Version Integrity... 7-16
7.6 Visual Difference ... 7-18

7.6.1 Configuring the Visual Difference Application.. 7-18
7.6.2 Comparing Files with Visual Difference... 7-18

7.7 Partner Site Replication Window... 7-19
7.7.2 Loading a Partner Site Release... 7-21

7.8 Load Schema .. 7-22
7.8.1 Load Schema Window... 7-22
7.8.2 How to Run the Load Schema Function.. 7-24
7.8.3 How to Check for a Successful Load Schema Completion 7-26
7.8.4 How to Handle a Canceled or Crashed Load Schema.. 7-26
7.8.5 Load Schema and Object Domains... 7-27

7.9 Server Upload Window.. 7-28
7.9.1 Deploying Web Objects ... 7-30
7.9.2 Deploying Objects to an AppServer... 7-31

Contents

xi

Interfaces..A-1
A.1 Introduction..A-1
A.2 Edit Program: rtb/p/rtb_open.p ...A-1
A.3 Managing Application Data with the Edit Program ..A-2

A.3.1 Edit Program Guidelines ...A-2
A.3.2 Sample Edit Program Application..A-3

A.4 Report Source Files Locations ..A-4
A.5 Task Record Access Using the Ref-num Field ...A-6
A.6 Roundtable PROPATH Management..A-6

A.6.1 Roundtable in the PROPATH..A-6
A.6.2 Workspace Directories in the PROPATH..A-7
A.6.3 Task Groups and Task Directory in the PROPATH ..A-7
A.6.4 The PROPATH During Roundtable Wait States ...A-7

A.7 Roundtable Interfaces with the ADE..A-7
A.7.1 ADE Intercepts ..A-7
A.7.2 ADE Hooks..A-8

A.8 Hooks and Application Programming Interfaces (API) ..A-9
A.8.1 Event Hooks ..A-9
A.8.2 Application Programming Interfaces (API) ..A-11
A.8.3 Legacy API ..A-19

Glossary ..Glossary-1

Preface

Preface

Purpose
This book provides the Roundtable user with in-depth information about the Roundtable Total
Software Management System.

Audience
This book is intended for Progress developers, Managers of Progress developers and staff
responsible for quality assurance and deployment of Progress applications.

Organization of This Guide
Chapter 1, “Software Configuration Management”

Provides a high-level overview of the configuration management discipline and explains
how to use Roundtable to achieve effective Software Configuration Management.

Chapter 2, “The Tabletop”

Provides an overview of the Roundtable Tabletop and demonstrates the integration
between the Progress ADE and Roundtable.

Chapter 3, “Roundtable Administration”

Discusses each area that must be addressed before you set up your system.

Chapter 4, “Workspaces”

Introduces you to Workspaces and presents detailed information about utilizing
Workspaces in your development environment.

Chapter 5, “Task Management”

Roundtable User's Guide

 xiv

Explains Task management in depth.

Chapter 6, “Objects”

Explains each of the Object Types available in the Roundtable system.

Chapter 7, “Tools”

Documents a number of useful tools provided in the Roundtable environment.

Appendix A, “Interfaces”

Provides examples of how to access Roundtable data directly and how to add your own
interface routines.

Typographical Conventions
This guide uses the following typographical conventions:

• Bold typeface indicates:
- Commands or characters that the user types
- That a word carries particular weight or emphasis

• Italic typeface indicates:
- Progress variable information that the user supplies
- New terms
- Titles of complete publications

• Monospaced typeface indicates:
- Code examples
- System output
- Operating system filenames and pathnames

The following typographical conventions are used to represent keystrokes:

• Small capitals are used for Progress key functions and generic keyboard keys.
END-ERROR, GET, GO
ALT, CTRL, SPACEBAR, TAB

• When you have to press a combination of keys, they are joined by a dash. You press
and hold down the first key, then press the second key:
CTRL-X

• When you have to press and release one key, then press another key, the key names
are separated with a space.
ESCAPE H
ESCAPE CURSOR-LEFT

Preface

 xv

1

Software Configuration Management

1.1 Introduction
The Roundtable product is a team-oriented extension for the Progress development
environment that provides extensive Software Configuration Management (SCM) and
programming productivity tools. This chapter provides a high-level overview of the
configuration management discipline and explains how to use Roundtable to achieve effective
SCM.

SCM is the discipline of managing the entire life cycle of a software project. While the term is
often used to describe change control systems, just implementing a change control system
does not mean that an organization is practicing SCM.

Practicing SCM requires the application of business and engineering policies and procedures
to ensure an appropriate level of control and auditability throughout a software project.
Implementing SCM involves introducing tools to help manage the many aspects of both the
business and engineering domains of the software project.

SCM is comprised of four well-defined activities: Configuration Identification, Configuration
Control, Configuration Auditing, and Configuration Status Accounting.

An organization that implements SCM usually focuses on the tools that the SCM software
provides rather than on the SCM discipline. A key issue in implementing SCM is identifying
the roles and responsibilities of the individuals involved in the software project. A primary
concern of the SCM discipline is how teams work together to build systems. The organization
that implements SCM can realize enormous benefit from implementing strong engineering and
business management policies in support of the team process, regardless of the tools provided
by the SCM software. An organization that effectively implements SCM unifies business and
engineering management disciplines.

Just about everyone in the software industry has a horror story about the project that doubled

Roundtable User's Guide

 1-2

or tripled in cost and failed to do anything useful. Most of these failures could have been
avoided if the organizations had implemented SCM. SCM's control of and visibility into the
software development process would have made it possible for management to adjust,
redefine, or cancel the project before it ran aground.

The most difficult issue facing the business manager of a software development effort is
auditability. It is extraordinarily difficult to know, with any degree of certainty, what the state
of a software project is at any given time. Additionally, the trend is toward more complex
software tools, and business systems of increasingly larger scope.

The ideal SCM system allows you to simplify, streamline, and seamlessly integrate the
management of the software life cycle into the development environment so that business
managers can play an active and meaningful role in the process of software definition,
development, and maintenance. The challenge is to introduce the management principles of
control, auditability, and status accounting in a way that engages the software engineer,
designer, and quality assurance staff in the cooperative effort.

Software engineers often resist introducing management practices into the software
development process. They are concerned that management practices will cramp creativity and
increase paperwork. To deal with these issues and maintain the morale of the group, the new
tools must do at least as much for the software engineer as they do for the business manager.
The Roundtable system can and has accomplished this!

When you present engineering personnel with an SCM implementation, the main reason for
their resistance is that they see the system as extra work and an affront to their abilities.
Telling the software engineer that the SCM system will allow management to manage them
better will not get engineers excited. To get their attention, you show them new tools that
improve communication among the engineering staff, reduce meeting time, allow decisions on
change requests to be made quickly, and keep management out of their hair. Roundtable tools
integrate with the development environment and fill the needs of software, quality assurance,
and support engineering as well as the needs of management.

Roundtable allows management to become more involved in the software development
process without compromising or inhibiting the creativity or productivity of the engineering
staff.

1.2 Exploiting the Opportunity
Roundtable makes it possible for everyone involved in the SCM process to communicate and
share information electronically. Roundtable's task management paradigm provides engineers
and managers with almost immediate response to action item requests throughout the project.
Additionally, it puts much of the project information at the fingertips of both managers and
engineers right inside the development environment.

Software Configuration Management

 1-3

One of the most difficult steps in implementing SCM is choosing the correct SCM model for
your organization. Roundtable allows your organization to design and implement an SCM
model that achieves a high degree of concurrence between the capabilities of the system and
the needs of the project being managed. The essential issue in designing the model is how
much of the configuration auditing process to apply and how many workspaces to implement.

1.3 Principal SCM Activities
An SCM system is comprised of tools that support the four basic activities of SCM:

• Configuration identification

• Configuration control

• Configuration auditing

• Configuration status accounting

1.4 Configuration Identification
Configuration identification is simply the identification of a relative arrangement of software
system components. An important part of configuration identification is the realization that a
software project is comprised of much more than source code. A software project might
include:

• Contract or marketing specifications

• Functional requirements documentation

• Architectural design documents

• Quality assurance guidelines

• Coding standards documentation

• Component analysis documents

• Component design documents

• Source code/binary code

• Tool configurations used to produce system builds

• Test data suites

• User documentation (including on-line help)

The configuration identification framework must provide an intellectual and mathematical
basis for describing the relative arrangement of these system components at a specific point in
the development process. Over time, software systems undergo an iterative, incremental
evolution that can be described as a series of baselines. The following table lists some

Roundtable User's Guide

 1-4

commonly used SCM baselines. The terms provide a good starting point for a discussion of
which baselines a given product development effort needs.

Abbreviation Description

FB Functional baseline (often called requirements
specification)

AB Allocated baseline (often called functional specification)

DB Design baseline (often called engineering baseline)

Alpha Alpha baseline

Beta Beta baseline

PB Product baseline (golden masters)

The following table lists system components and indicates the baselines with which they are
usually associated:

System
Components

FB AB DB Alpha Beta PB

Contract or marketing
specifications

Yes Yes Yes Yes Yes Yes

Functional requirements
documentation

Yes Yes Yes Yes Yes Yes

Architectural design
documents

 Yes Yes Yes Yes Yes

Quality assurance
guidelines

 Yes Yes Yes Yes Yes

Coding standards
documentation

 Yes Yes Yes Yes Yes

Software Configuration Management

 1-5

System
Components

FB AB DB Alpha Beta PB

Component analysis
documents

 Yes Yes Yes Yes Yes

Component design
documents

 Yes Yes Yes Yes

Source code/binary
code

 Yes Yes Yes

Tool configurations
used to produce system
builds

 Yes Yes Yes

Test data suites Yes Yes Yes

User documentation
(including on-line help)

 Yes Yes

Your system may require more or fewer baselines, and some of the system components belong
in different baselines. Your objective in identifying a baseline is to define what should be in
the system at a given point in time.

Baselines are often incorrectly referred to as milestones. However, milestones identify points
in the project schedule where you reach specifically identified goals. Often, there are many
project milestones within each project baseline. Configuration auditing is the process of
ensuring that a system does contain everything implied by its baseline status.

1.4.1 SCM and the Development Cycle
Early SCM efforts saw the waterfall development cycle entrenched in the policies, procedures,
and tools used to implement the SCM discipline. Modern software development incorporates
an iterative development process that includes rapid prototyping, JAD sessions, and
component-oriented system construction. These and other factors make the waterfall
development cycle a poor model around which to construct project- and software-management
policy and procedures. If SCM is to be a natural and intuitive part of the software
development process, its policies, procedures, and tools must accurately record and model the
activities of the process. The SCM discipline must support iterative development and the
management of parallel activities.

Iterative development involves the incremental improvement of a baseline through a series of

Roundtable User's Guide

 1-6

measure, cut, and fit cycles. The underlying theory is that it is not possible to completely
define the problem domain of a given application without the experience of trying to build
some parts of it. Design methodologies are based on the concept of decomposition. You must
break down a large system into smaller parts in order to understand the relationships of objects
in the problem domain.

The relationships of components in a complex software system are not always obvious until
the development process is underway. Changes in system design often occur as a result of
issues that surface during the development process. Often, decision makers for a project are
not technically oriented and can be reluctant to make decisions based on design abstractions.
Instead, they want to see major portions of the system functionality surfaced before they make
these decisions.

Roundtable provides an answer to this iterative development process by allowing multiple
instances of the software system to exist concurrently. These instances are called workspaces.
These workspaces support an incremental development cycle that is fully controllable under
the SCM disciplines.

Refer to the three workspaces in the following diagram:

Development Test Pre-Prod

- Least Stable Environment
- Newest Codebase
- Unit Testing
- Poor Data
-Highest Rate of Change

- Moderately Stable
- Regression Testing
- System Flowthru Testing
- Good Data
- Slower Rate of Change

- Very Stable
- Stress Testing
- Live Testing
- Real World Data
- Scheduled Changes

The arrows indicate a flow of new and updated system components from workspace to
workspace. This flow is controlled by you, the developer, and generally occurs when a self-
consistent set of changes is completed in one workspace and is ready for importation into the
next (target) workspace. The important issue in this promotion of changes from one workspace
to another is that all modified components are promoted together as a unit, and that
comprehensive documentation of the impact of the modifications on the target workspace is
available.

Software Configuration Management

 1-7

A workspace is defined primarily by its use, while a baseline defines the expected content of a
workspace. Because you are in control of how many workspaces exist in your development
environment and how they are used, Roundtable has no strict rules regarding the relationship
between workspaces and baselines. However, here are some general guidelines based on the
simple workspace example previously shown:

• Development workspace — Primary development area

− Functional baseline

− Allocated baseline

− Design baseline

• Test workspace — Primary testing, limited changes (mostly bug fixing)

− Alpha baseline

− Beta baseline

• Pre-prod workspace — primary deployment

− Production baseline

In some environments, there is a tendency to think of the Test and Pre-prod environments as
builds of a system. This approach is clumsy and less than satisfactory for larger development
efforts as it precludes the opportunity for maintenance or emergency patch activities in any
workspace except Development. If there is significant change in the development environment
after the build that represents the Test workspace, it may not be possible to produce a patch
for the test environment in a timely way.

Roundtable provides extensive support for identifying potentially dangerous concurrent
changes to software system components in different workspaces. This conflict is called orphan
change management. For more detail, see the "Object Variants" section in Chapter 4. This
support for orphan change management allows parallel development to occur in two or more
workspaces simultaneously with an appropriate level of control and visibility.

Your business model drives your decision to allow changes outside the Development
workspace. Consider the following situation.

You oversee the development of an in-house MIS system of significant size. Management
demands that some, but not all, of the system become operational as soon as possible. Your
team members code these early deliveries first and promote them from the Development
workspace into the Test workspace, where testing begins.

In the meantime, programmers working on the new system components make changes to some
of the previous components to accommodate the interface and shared-data requirements.

In the Test workspace, the testers discover bugs and other problems in the system components.
The programmers, working on the system in the Development workspace, inform you that

Roundtable User's Guide

 1-8

while they can make the changes requested by the testers, they cannot deliver the changes into
the Test workspace because the system components in question have been modified to work
with the new system components. However, management still wants the system components
that are in the Test workspace.

This situation presents a compelling argument for making the bug fixes and required changes
in the Test workspace. The Roundtable orphan change management functionality makes this
possible with minimum risk.

Parallel development occurs when there are many variations (or flavors) of a system. For
example, a core business system might be modified for different clients or for vertical markets.
Roundtable maintains each variant in a separate workspace and manages the promotion of
code.

A later section in this chapter addresses more advanced issues of workspace management for a
variety of situations.

1.4.2 Configuration Item Identification
In Roundtable, the basic configuration item is called an object. Each object is stored in a
repository, which is a Progress database. You can query information on these objects using the
Progress 4GL.

The repository stores a version ancestry for each object, which is comprised of each version of
the object. Rather than store the full content of each object, most object versions are in a delta
format that lists only the changes from the previous version.

Objects are stored in the repository using a unique key with the following components:

• Object type

• Product module

• Object name

• Version code

Any configuration of your system can be expressed as a list of object versions, with each
object version specified by the four component values required to extract the object from the
repository. When you specify the contents of a workspace, Roundtable extracts the appropriate
objects from the repository and writes the contents of the object to OS files or, as in the case
of schema objects, into the Progress database schema.

The object types supported by Roundtable include:

• PDBASE: A database definition.

Software Configuration Management

 1-9

• PFILE: A table definition.

• PFIELD: A field (column) definition.

• PCODE: A general file container, usually source code or binary resources.

• DOC: A document file.

The other components of the key are described in the following sections.

1.4.3 Configuration Hierarchy: Product Modules and Workspaces
Configuration identification of a system involves decomposition of the system into smaller,
more manageable, modules. Roundtable supports the mapping of a logical configuration
hierarchy to a physical configuration hierarchy.

The logical configuration hierarchy is the hierarchy of the objects in the repository. Each
object belongs to a product module, and each product module belongs to a product. This
defines a three-level, logical view of the object stored in the repository:

• Product

• Product module (one or more per product)

• Object (one or more per product module)

The logical configuration hierarchy provides a way to define the logical relationships of
objects quickly. It also serves as a form of documentation for your system design. Generally, it
is a good practice to define your product modules along the functional boundaries of your
system. For example, if you develop a general accounting application, you may have product
modules for general ledger, accounts payable, and accounts receivable.

The physical configuration hierarchy is the definition of workspace contents, down to the
specific directories in which to store objects. Each workspace represents a collection of object
versions. Roundtable manages a table of these object versions, called the configuration list.
The following fields define the unique key for objects in this table:

• Workspace ID (Wspace-id)

• Object type (PDBASE, PFILE, PFIELD, PCODE, or DOC)

• Object name

In conjunction with the object type and object name above, the following fields are included in
the configuration list, allowing the unique identification of the object version contained in the
workspace:

• Object Version

• Object Pmod

Roundtable User's Guide

 1-10

Refer to the following diagram:

Workspace

Configuration List of Workspace

Wspace Obj-Type Obj-Name Pmod Version
------ -------- -------- ---- -------

Repository

Object Storage in Repository

Pmod Obj-Type Obj-Name Version
---- -------- -------- -------

Unique Key Unique Key

Object Retrieval

Each entry in the configuration list also specifies a workspace module. Workspace modules
map objects belonging to a product module, associated with the workspace module, to a
specific directory structure. (The directory structure is always specified relative to a root
directory for the workspace.) Each product module is associated with only one workspace
module, but many product modules can be associated with that workspace module. This
allows objects from multiple product modules to coexist in the same directory if necessary.
This functionality allows the effective management of custom systems.

Software Configuration Management

 1-11

The following diagram illustrates a simple system:

c:\acctapp

.\ap
prog01.p
prog05.p
prog03.p

.\ar
prog02.p
prog06.p

.\gl
prog07.p
prog08.p

Workspace root directory specified in workspace
definition.

ap subdirectory specified in workspace module
definition.

PCODE object belonging to a product module that has
been associated with the workspace module.

Configuration List
Workspace Object Object

Workspace Module Pmod Name
--------- --------- -------- ---------
acctapp ap ap prog01.p
acctapp ap ap prog05.p
acctapp ap ap prog03.p
acctapp ar ar prog02.p
acctapp ar ar prog02.p
acctapp ar ar prog06.p
acctapp gl gl prog07.p
acctapp gl gl prog08.p

Workspace Modules
Module Directory
------ ------------------
ap ap
ar ar
gl gl

Product Modules
Workspace

Pmod Module
------ ---------
ap ap
ar ar
gl gl

There is a one-to-one correspondence between the workspace module name and the directory
name associated with the workspace module. In addition, there is a simple one-to-one
correspondence between the workspace module name and the product module name. When
you design a new system, you should retain these simple relationships.

Roundtable User's Guide

 1-12

The following diagram demonstrates a slightly more complex system:

c:\acctapp

.\ap
prog01.p
.\rpts
prog05.p
prog03.p

.\ar
prog02.p
prog06.p

.\gl
prog07.p
prog08.p

Workspace root directory specified in workspace
definition.

Here, a special directory just for reports has been
created. Both a workspace module and product
module must be created to manage this
subdirectory. See the tables below.

Configuration List
Workspace Object Object

Workspace Module Pmod Name
--------- --------- -------- ---------
acctapp ap ap prog01.p
acctapp ap-rpt ap-rpt prog05.p
acctapp ap ap prog03.p
acctapp ar ar prog02.p
acctapp ar ar prog02.p
acctapp ar ar prog06.p
acctapp gl gl prog07.p
acctapp gl gl prog08.p

Workspace Modules
Module Directory
------ ------------------
ap ap
ap-rpt ap\rpt
ar ar
gl gl

Product Modules
Workspace

Pmod Module
------ ---------
ap ap
ap-rpt ap-rpt
ar ar
gl gl

The subdirectory ap\rpt contains accounts payable reporting procedures. This example
illustrates the need to create a workspace module and product module for each subdirectory in
the system.

You might want to map objects that appear in the same physical directory to different product
modules.

Software Configuration Management

 1-13

The following diagram shows this approach:

c:\acctapp

.\src
ap-01.p
ap-02.p
ap-03.p
ar-01.p
ar-02.p
gl-01.p
gl-02.p

Workspace root directory specified in workspace
definition.

Here a single directory holds all of the system
source. While this is an unusual approach, it is used
by a number of PROGRESS developers.

Configuration List
Workspace Object Object

Workspace Module Pmod Name
--------- --------- -------- ---------
acctapp ap ap ap-01.p
acctapp ap ap ap-02p
acctapp ap ap ap-03.p
acctapp ar ar ar-01.p
acctapp ar ar ar-02.p
acctapp ar ar ar-03.p
acctapp gl gl gl-01.p
acctapp gl gl gl-02.p

Workspace Modules
Module Directory
------ ------------------
ap src
ar src
gl src

Product Modules
Workspace

Pmod Module
------ ---------
ap ap
ar ar
gl gl

When all of the objects are collected in a single
directory, it is not unusual to find them named in so
that it is obvious what functional group they belong
to.

As you can see by these examples, it is possible to map any level of directory structure to
workspace modules in the Roundtable environment.

See the "Defining a Configuration Hierarchy" section in Chapter 4 for a more detailed
explanation of how to map your existing software application into a configuration hierarchy.

1.5 Configuration Control
The Configuration Control Board (CCB) plays a central role in the configuration control
process. It is often comprised of both buyer and seller representatives and is responsible for
making decisions about the changes to be made to the system definition during the course of
the project. The CCB approves, monitors, and controls:

• The conversion of design objects into system (software) configuration items

• Changes to the system

Roundtable User's Guide

 1-14

To ensure the success of an SCM effort, it is important to adopt a formal SCM plan. A typical
Configuration Management Plan contains the following checklist:

1. System Description

• An overview of the system being built

• Configuration management (CM) organization

• The CCB

• Identification

• Control

• Auditing

• Status accounting

• Other product assurance disciplines

2. CM Tools

• Identification tools and labeling conventions

• Control tools

• Auditing tools

• CM procedures

• Design stages

• Development stage

• Deployment stage

• Operational/maintenance stages

3. CM Resources

• Budget dollar

• Budget staffing

• Budget other

There are many good texts on SCM that provide information on how to implement a full SCM
plan and define and assign the responsibilities of the CCB. A common-sense approach to
implementing a CCB is usually enough, unless the software project is huge or is for the
military. For work done under government contract, find out which of the many SCM
standards documents the contract requires and implement those standards. The standards
cover every phase of the software project life cycle, and even provide sample forms and report
formats to facilitate communication during the project.

Software Configuration Management

 1-15

1.5.1 Task Management
Roundtable provides a task paradigm for assigning and tracking work performed in a software
project. No changes may be made to objects under Roundtable control without an active task
to perform the work. Use the Roundtable security system and tasks together to implement a
variety of controlled workflow policies. These policies can vary by workspace.

As the system director, you determine who can create, use, and complete tasks. In a loosely
managed environment, it is not unusual for programmers to have this authority. When you
require complete control over the changes made in a system, you can set security permissions
so that only you can create a task, check out an object under the task, and complete the task. In
other words, the programmer can only work on objects you provide under the task.
Roundtable security is set up by function and user, so you can achieve a balance between
control and flexibility.

Tasks also provide an effective reporting mechanism. You can generate a report that describes
the task and each of the objects being created or modified under the task. This report provides
information to team members who are interested in your work because it overlaps theirs, and
to managers who need to track the Progress of the project.

On smaller projects, the CCB may directly authorize all tasks, even if the tasks are actually
created and entered by the programming staff.

1.6 Change Control
Configuration control requires that your SCM system provide at least the following three
simple version control capabilities:

• Protection from lost changes

• Version identification

• Version retrieval

Roundtable provides protection from lost changes as a check-in/check-out process that
essentially grants write access to a single user for a system component in a workspace.
Version identification tracks current and previous versions of a file using a unique numeric
identifier. Version retrieval allows a user to request a copy of some previous version of a file.

Roundtable provides the following enhanced change control features:

• Version branching (parallel development/orphan change management)

• Variant identification and management (management of custom variants having
independent version ancestries)

• Shared and private work areas (sometimes called sandboxes)

Roundtable User's Guide

 1-16

The Roundtable workspace management functionality provides another level of change
control not found in most SCM systems, a form of version merging at the system-
configuration level.

Roundtable provides a sophisticated mechanism for both protecting and sharing work being
performed by team members. When you want work in Progress to be completely isolated from
other users, you may check source objects out to a task directory that is not visible to other
users of the workspace. The previously completed version of the source object remains in the
workspace directory structure so that other users can continue to use the older version of the
object. (Remember, all work done within a Roundtable-controlled workspace is done under an
assigned task. You may specify a task directory when you create the task. The task belongs to
the programmer to whom it is assigned, and the task directories should be unique to the task, if
possible.)

When two or more programmers must work closely together on part of the system, Roundtable
can copy the source objects being worked on by a programmer into a group-directory that is
associated with one or more tasks. Roundtable sets up the PROPATH with paths in the
following order:

• Task directory

• Group directories

• Workspace directory

This capability allows you to make a source object that is not yet completed available to other
programmers. This is useful when you need to modify a common include file or procedure.

You may also want to make a source object that is not yet completed available to all of the
users of a workspace. Roundtable can copy a source object from the task directory into the
workspace directory on demand. Roundtable can also reverse this decision and restore the
previously completed version of the object into the workspace directory. This functionality
makes it possible for everyone to test modifications before an object is complete.

Roundtable manages the placement of a source object in the task, group, and workspace
directories based on the share status of the source object version. The share status of an object
can be changed as necessary, and Roundtable performs all association housekeeping for you.
This housekeeping includes recompilations to ensure accurate system views for each user.

1.7 Configuration Auditing
Configuration auditing is the process of confirming that all system components that should be
in a given baseline are in the baseline. The checklists in the next few sections illustrate some
of the questions asked during the audit process for sample baselines. When a baseline audit is
completed, the baseline is said to be sanctioned. Roundtable provides workspace, product, and

Software Configuration Management

 1-17

task reports that identify the status of each registered component (object). It also provides
textual information describing the component and its version identification. Use these reports
to address some of the questions on the configuration audit checklists.

Configuration auditing is the mechanism management uses to ensure that a software project is
on track and building what is actually required. Some argue that a given software project has
so much R&D content that configuration auditing is not useful. This is not the case at all. If
the team must use exploratory engineering to refine the product definition, this should usually
be done without the overhead of full configuration auditing. However, it is dangerous and
foolhardy to commit to the development of a product if its required concepts, design, and
implementation strategies cannot be stated at the level of detail required by the configuration
audit process.

1.7.1 Functional Baseline Audit Checklist
The functional baseline (FB) describes the system on a top-level functional basis. The FB is
the first baseline produced. An SCM audit of the functional baseline should answer the
following questions:

1. Is there is a clear trace between system requirements and software requirements?

2. Is it possible to sort out software from system requirements?

3. Is there a system concept that is consistent with stated operational requirements?

4. Is the functional design of subsystems consistent with stated system requirements?

5. Do the user, seller, and buyer agree on the content of the functional baseline?

1.7.2 Allocated Baseline Audit Checklist
The allocated baseline (AB) is the mapping of system design to functional components. It is
important to know what parts of the system provide the functionality identified in the FB. An
SCM audit of the AB should answer the following questions:

1. Is there clear traceability of the functional specification in the FB and the allocated
functional items in the AB. In other words, is it clear which parts of the system provide
each function identified in the FB?

2. Are all functions that are identified in the FB mapped to functional items in the AB?

3. Are models and algorithms that define functions to be performed logically and
mathematically correct and consistent in both a verification and validation sense?

4. Does the AB clearly separate hardware, off-the-shelf software components, and new
software functions?

Roundtable User's Guide

 1-18

5. Are all questions concerning technical options, trade-offs, operation requirements, etc.,
that may impact subsequent detailed design, answered or at least identified?

6. Do the user, seller, and buyer agree on the content of the AB?

1.7.3 Design Baseline Audit Checklist
The design baseline (DB) is comprised of detailed designs for each functional component of
the system. An SCM audit of the DB should answer the following questions:

1. Does each detailed design item correlate with a functional component?

2. Is the DB complete enough to be used in a design review process?

3. Has a design review process been completed and all resulting issues resolved?

4. Does the DB fulfill product assurance requirements (including design standards,
procedures, and facilities for testing)?

5. Is the overall architectural and design approach clear?

6. Do the user, seller, and buyer agree on the content of the DB?

1.7.4 Alpha Baseline Audit Checklist
The alpha baseline should define the first cut of some or all of the system that can be
examined as a working software system and used to gather information from potential users
and do proof-of-concept testing. An SCM audit of the alpha baseline should answer the
following questions:

1. Are the screens and processes in the system a direct expression of the specifications in the
AB and the design in the DB?

2. Does the alpha baseline contain enough functionality to allow meaningful comments by
the software reviewers?

3. Has the alpha baseline satisfied product assurance requirements? (Note that these
requirements may be greatly relaxed from those applied to the product baseline, described
later.)

4. Have provisions been made for the support of the alpha release?

5. Has a plan been developed for incorporating alpha baseline comments into the system?

6. Do the user, seller, and buyer agree on the content of the alpha baseline?

1.7.5 Beta Baseline Audit Checklist
The beta baseline should define the first cut of some or all of the system that can be examined

Software Configuration Management

 1-19

as a working software system used in an actual production setting and used to gather
information from potential users and do proof-of-concept testing. An SCM audit of the beta
baseline should focus on establishing answers to the following questions:

1. Are the screens and processes in the system a direct expression of the specifications in the
AB and the design in the DB?

2. Does the beta baseline contain enough functionality to allow its use in a production
setting?

3. Has the beta baseline satisfied product assurance requirements? (Note that these
requirements may be marginally relaxed from those applied to the product baseline,
described later.)

4. Have provisions been made for the support of the beta baseline release?

5. Has a plan been developed for incorporating beta baseline comments into the system?

6. Does an expedite mechanism exist for reporting critical bugs discovered in the beta
baseline?

7. Are the appropriate processes in place to develop and deliver patches to beta baseline
users?

8. Have adequate policies and procedures been developed to track and manage beta baseline
users?

9. Do the user, seller, and buyer agree on the content of the beta baseline?

10. Do the user, seller, and buyer concur that the beta baseline is complete and free of any
defects that prohibit establishing the beta baseline?

1.7.6 Product Baseline Audit Checklist
The product baseline (PB) is comprised of the completed system. It defines the system and is
often referred to as the "as-built" definition. An SCM audit of the PB should answer the
following questions:

1. Are the source code and data structures of the PB a direct translation of the DB?

2. Do the FB, AB, DB, and PB correspond? In other words, is it possible to state with
certainty that what was contracted to be built was in fact built?

3. Has the PB satisfied product assurance requirements?

4. Are all of the deliverable components that comprise the system registered as part of the
PB?

5. Does the PB fulfill all known and specified operational requirements?

Roundtable User's Guide

 1-20

6. Have standards and good programming practices been met and approved by the product
assurance department?

7. Do the user, seller, and buyer concur that the PB is complete and free of any defects that
prohibit establishing the PB?

1.8 Configuration Status Accounting
Configuration status accounting ensures that a complete and accessible record of the changes
to a software system and reasons for such changes are available. Most programmers do
configuration status accounting without knowing they do it, by keeping a programmer's
notebook and inserting comments in the source code. The objective in configuration status
accounting is to record why, when, and by whom a change is made. Configuration status
accounting is often a reporting function that pulls the required information out of data stores
created and managed by the configuration control tools in the SCM system.

Roundtable provides extensive configuration status accounting through the implementation of
task and workspace management. Essentially, no change can be made to the software without
it being tracked as part of a task in a specific workspace.

1.9 SCM Information Flow
You should develop a formal information flow among the groups involved in the SCM effort.
A simple example of this information flow follows:

Software
Quality

Assurance
Group

Software
Development

Group

Change
Control Board

(CCB)
Task Assignments

Change Control Info

Change RequestsChange Requests

This simplified model places the CCB in a role of direct, day-to-day involvement in the

Software Configuration Management

 1-21

development process through the creation of task assignments. In Roundtable, all work is
performed under the auspices of a task assignment, and changes can be tracked back to that
task. It is normal practice to enter a description of the change request or design reference into
the task assignment so that changes to the system made under a given task can be tracked back
to an original specification document. This example uses change request as a general term
covering all types of change notification documents. Change notification documents are not
directly managed in the Roundtable system, although there is an indexed userref# field in the
task record that you can use to tie the task record to a user-supplied defect record or group of
records.

1.10 Benefits of SCM
SCM illustrates the development process and provides better information for management and
more predictable delivery schedules. The goals of SCM are to:

• Improve profitability

• Save time

• Reduce the amount and improve the quality of communication between management
and programmers

• Reduce the cost of producing software

• Achieve a net increase in productivity

• Shorten the development cycle time from design to delivery

• Improve the accuracy of the estimating process

• Improve the project management information flow within the development, testing, and
deployment cycles

• Make the version control process as transparent as possible

• Make higher-quality information quickly available to each team member

• Make accessing system configuration information a natural and simple part of the
development process

1.11 Workspace Networks
You implement SCM policy by defining what work should be done in each Roundtable
workspace and by defining the flow of changed objects allowed between workspaces. The
Roundtable importation process searches source workspaces for objects that should be
imported into the current target workspace. You define networks of workspaces by specifying
a list of source workspaces for each workspace, and by providing the additional product
configuration information that allows Roundtable to determine which objects in the source

Roundtable User's Guide

 1-22

workspace are candidates for importation. The definition of source workspaces is part of the
setup for a new workspace and does not have to be repeated for every importation.

1.12 SCM for Product Releases
SCM policies and procedures for managing a software development effort depend on the kind
of software development being undertaken. It is common for software development to result in
a product release.

Product releases are generally deployed to large numbers of users and packaged for
installation, by the user at the user's site, with little or no involvement by the software
developer. The ongoing development of the Progress 4GL is a good example of a product-
release-oriented development effort.

Product releases occur at well-defined intervals and often contain significant advances in
system functionality. It is not unusual for a year or more to pass between major releases of
such a product.

Many justifications exist for pursuing the product release strategy. One of these is the tooling
time required to manufacture everything from written documentation to packaging. Another
reason is that as the complexity of a system grows, it becomes very difficult to predict the
indirect impact of changes made to the system. Therefore, the system must be tested
thoroughly, as a complete and stable entity, several times prior to release.

The following sequence of diagrams depicts the evolution of a product managed by the
Roundtable system:

Devel Test

When work in the Devel workspace reaches
the point where some parts of the system can
be tested with reasonable coverage. These
parts of the system are imported into the Test
workspace. The contents of the Test work-
space progress through Alpha and Beta base-
lines. Work on new development continues in
the Devel workspace.

Software Configuration Management

 1-23

Devel Test Ver 1.x

When the product baseline is
established for this version (1.0) of the
software system, a third workspace is
created, and the software from Test is
imported into it. It is from the Ver 1.x
workspace that deployment packaging
is created. The workspace is named
Ver 1.x because future interim
releases, Ver 1.1, Ver. 1.2, etc., may
be deployed from this workspace.

Devel Test Ver 1.x

Ver 2.x

At some point in the future, a new FB,
AB, and DB for Version 2.0 of the
system are developed in the Devel
workspace. These new baselines are,
generally, evolutionary descendents of
the system's 1.x baselines. Note that
both the Devel and Test workspaces are
now devoted to generating a new Ver
2.x product and that a new Ver 2.x
workspace is created for the deployment
of the new 2.x family of software.

Roundtable retains a complete evolutionary development history of the system in the Devel
workspace. The Ver 1.x workspace contains configuration histories for that generation of the
software system. It is not unusual for maintenance efforts to be active in the Ver 1.x
workspace to provide some level of support for the older software after the Ver 2.x generation
is released. While it is possible to import new or modified software from the Test workspace,
this is usually a very selective and infrequent occurrence.

The strategy presented provides continued support of older generation products. Roundtable
allows you to manage on-going development in any of the workspaces above and then merge
the completed work into other workspaces. For example, if a bug is fixed in the Ver 1.x
workspace and the modified procedure is unchanged in the Devel workspace, Roundtable
informs you that you can bring the newer code into the Devel workspace so the bug can be
eliminated from the Ver 2.x product.

Roundtable User's Guide

 1-24

Refer to the following diagram:

Devel Test Ver 1.x

Ver 2.x

The arrow from the Ver 1.x workspace
to the Devel workspace indicates the
importation of code changes (because of
maintenance in Ver 1.x) into the Devel
workspace. From there, they can flow
through the Test workspace and then
into the Ver 2.x workspace. The flow of
changes from Ver 1.x to Devel is
managed safely by Roundtable, and you
remain in complete control of the
process.

In general, it is possible to establish a flow between any two workspaces at any time. The key
to effective workspace management lies in having clear policies for workspace promotions
and understanding how these workspace promotion activities relate to the versions of your
system.

1.13 SCM for Incremental Deployment
Another common software development life cycle involves the incremental deployment of an
application as various components are completed. This is common in IS environments where
the developers have a relatively small audience and a high degree of involvement with end
users. This kind of development life cycle is also common where custom business systems are
being developed and the user wants to see the progress of the application.

It is not unusual for development to commence before there is a firm and complete
understanding of the scope and specific functionality to be included in the system. While many
would argue that the answer to this problem is to insist on defining specifications before work
begins, there are many pressures that lead to a compromise.

Regardless of what circumstance leads to implementing an incremental deployment strategy,
Roundtable provides tools that allow you to manage this approach effectively, according to
accepted SCM practices.

Software Configuration Management

 1-25

Refer to the following diagram:

Development Test Pre-Prod

- Least Stable Environment
- Newest Codebase
-Unit Testing
- Poor Data
- Highest Rate of Change

- Moderately Stable
- Regression Testing
- System Flowthru Testing
- Good Data
- Slower Rate of Change

- Very Stable
- Stress Testing
- Live Testing
- Real-World Data
- Scheduled Changes

Each Roundtable workspace is a complete instance of your software application. Because
Roundtable makes it possible to manage multiple workspaces easily, you can manage
incremental deployment successfully.

You must be aware of some troublesome problems with incremental deployment, and you
must develop policies and procedures to ensure effective management of your incremental
deployment strategy. These problems involve the unavoidable parallel development that
occurs in, at least, the Development and Test workspaces. Parallel development occurs
whenever a change is made to the same object in two different workspaces at the same time.
Roundtable, of course, ensures that each of these concurrent modifications results in different
version numbers, but it is possible for changes in one of the versions to be lost. The version
whose change would be lost is called the orphan version.

Consider the following situation:

1. An object is created in the Development workspace and completed with the version
number 01.00.00.

2. The object is promoted into the Test workspace. Testing of the object begins.

3. The object is checked out into the Development workspace and work begins on major
modifications that will take two weeks to complete.

4. A bug is discovered in the object in the Test workspace. The bug must be repaired before
the remaining tests can be performed. Since the object in the Development workspace is
now broken because of the new work being done on it, you need to fix the bug in the Test
workspace.

Roundtable User's Guide

 1-26

5. You check out the object in the Test workspace. Since Roundtable knows that the object
is checked out in the Development workspace, the system warns you that a possible object
orphan condition exists. You fix the bug in the object you have checked out in the Test
workspace. You inform the programmer who is working on the object in the Development
workspace of the changes you made so the fix can be incorporated into that version.

6. You check in the object in the Test workspace and choose to increment the revision
number, so the version code of the object in the Test workspace is 01.01.00. This object,
and other completed changes in the Test workspace, can then be imported into the Pre-
Prod workspace.

7. The programmer checks in the object in the Development workspace and chooses to
increment the version number, so the version code of the object is 02.00.00. Roundtable
provides a report that the programmer can run before a check in or task completion
process that reports on any orphan conditions that exist.

8. When you choose to import objects from the Development workspace into the Test
workspace, the object (discussed in this exercise) version 01.01.00 in the Test workspace
is replaced by the object version 02.00.00 completed in the Development workspace.

The most important action of this process is informing the programmer in the development
area that a change was made to the same object in the Test workspace. Otherwise, the
programmer may not catch the bug that was found in the original procedure and it will
resurface when the new version 02.00.00 is imported into the Test workspace. Roundtable
warns the user when orphan conditions exist that could lead to lost changes.

Another potential problem area with an incremental life cycle occurs when preparing updates
to system installs in the field. The Roundtable deployment system makes this simple. You can
define one or more sites to be updated from a given workspace. For each of these sites, you
can track each deployment sent to the site. Roundtable tracks the content of each deployment,
so there is never any doubt about which objects are at a site and what the version of each
object is.

Roundtable creates incremental deployments after the first deployment. An incremental
deployment consists of only the objects that have changed since the last deployment, and a list
of those procedures that must be recompiled because of the changes being delivered. Because
only the changes in the system are being delivered, the size of the update package is usually
very small compared to the size of the whole system. This often means that the update can be
sent by modem rather than by tape or on a number of disks.

Software Configuration Management

 1-27

1.14 SCM for Custom Variant Deployment
Many Progress Application Partners customize the applications they sell. This business
practice presents special challenges to the effective implementation of SCM. It is important to
recognize the difference between customizing a core application and simply building custom
systems from scratch. If you are building custom systems from scratch, each system can, and
should, be treated as a separate configuration, thus avoiding any complications in the
application of the SCM discipline. However, if you have a core application to which you add
or change functionality, enormous benefits come from managing the core application and each
custom variant so that changes in the core application can be easily promoted into selected
custom systems.

For example, customers who want to purchase your application with custom enhancements are
often concerned about the difficulty of getting updates to your core application and to the
custom enhancements. In fact, many of these customers may be abandoning their current
systems because they can no longer get cost-effective updates from an existing vendor.
Roundtable provides an effective solution to this problem.

The objects managed in the Roundtable system are stored in the repository by the following
unique key:

• Object type

• Product module (Pmod)

• Object name

• Version code

The pmod component of this key allows Roundtable to store two objects with the same object
type and name in the repository. Refer to the following table:

Object Type Product Module Object Name Version

PCODE core_ap menu.p 01.00.00

PCODE core_ap menu.p 01.01.00

PCODE cust1_ap menu.p 01.00.00

PCODE cust1_ap menu.p 02.00.00

This table shows that the object menu.p exists under both a core_ap and cust1_ap product
module. The menu.p object belonging to the cust1_ap is a custom variant. It represents a
replacement for the menu.p object belonging to the core_ap module.

The ability to store two objects of the same type and name, but with a different product

Roundtable User's Guide

 1-28

module, allows Roundtable to track custom variant objects in a workspace. Refer to the
following diagram:

Devel Test Core

Cust-1

This workspace network shows a
development, test, and core workspace
for the core application. A workspace in
which custom development will occur is
shown as well. The sample object,
order.p, is associated with a different
product module in the cust-1 workspace.

Assignment of order.p object in each workspace:
Workspace Product Object

Workspace Module Module Type Version
---------- --------- -------- ------ --------
Core ar core-ar PCODE 01.00.00
Cust-1 ar cust1-ar PCODE 01.00.00
Devel ar core-ar PCODE 01.01.00
Test ar core-ar PCODE 01.00.00

To manage the development of a custom system, begin by creating a workspace in which the
custom system will be developed (Cust-1 in the example). Then create one or more product
modules to contain the custom objects for the system (cust1-ar in the example). You can now
completely replace an object with a custom variant of the object (order.p in the example).

Objects with different product modules have completely separate version ancestries. For
example, a version 01.00.00 exists for order.p under each product module. This makes it
obvious that the object is a complete replacement for the core object and not simply a branch
version.

The Roundtable importation process is custom variant smart. It will not unwittingly overwrite
your custom work when you import changes from the core system into your custom
workspace. The rule that Roundtable applies is very simple: if the object in the target
workspace is not from the same product module found in the source workspace, Roundtable
overwrites it only when specifically instructed to do so.

Software Configuration Management

 1-29

1.15 Distributed Development
It is sometimes necessary to coordinate and manage related development activities occurring
at locations not directly connected to a central repository of configuration information. This
situation might occur because of geographic separation, the involvement of separate
organizations, or the use of incompatible tools in the development process.

Roundtable provides the ability to transfer configuration information among repositories to
facilitate distributed development. Each of these repositories is identified by a site number and
is often referred to as a site. The following sections discuss the basic issues involved when
doing distributed development and offer specific approaches to common distributed
development scenarios.

This discussion about distributed development focus on implementation strategies. Use the
references to chapter topics provided to supplement the materials in this overview.

1.15.1 Sites and Ownership
Each distributed development group runs its own copy of the Roundtable system and has an
independent repository where configuration information is stored. Each repository is identified
by a unique site number. A site number of 0 is allowed. It is treated in a special manner and is
the default value on first-time installations of the Roundtable system. The site designated with
the number 0 is called the central site.

Each additional site in the distributed development network of repositories will have unique
site numbers in the range of 1 to 999. A site with a number other than 0 is called a partner
site. The site numbers can be assigned in any order but cannot be changed once assigned.

Site numbers are used to provide a unified naming convention for information belonging to
each site. This is accomplished by using the site number as a separate key field in some
repository tables and by using the site number as a code prefix for other tables. This
identification of information by site provides the foundation for the sharing of information
among distributed repositories.

Much of the information you place in the configuration repository must be identified by a user
supplied code. The format of this code is important and is validated to conform to the
following rules:

• If entering a code on the central site (site 0), then the code must not begin with a
numeric character.

• If entering a code on a partner site (site number other than 0), then the code must begin
with three numeric digits that identify the partner site.

Using this strategy, the system is able to identify the originating site of each record in the
distributed network. The system allows only the originating site to modify a record.

Roundtable User's Guide

 1-30

The names of products, product modules, and subtypes are examples of items in the
Roundtable system that are affected by site numbering rules.

1.15.2 Deployments and Partner Site Replication
The system provides the ability to do a special form of deployment to partner sites.
Deployments to partner sites include selected repository information dumped to text file
format. A utility called the Partner Site Replication reads this repository information into the
partner site repository.

The process of deploying to a partner site is no different that deploying to a customer as
discussed earlier, but the type of site must be set to "partner". Partner sites can deploy to
other partner sites and to the central site. The central site can deploy to any partner site.
Alternately, a site can initiate the retrieval of the repository data from another site via an
Internet or intranet connection.

A site receives the deployment package and runs the Partner Site Replication utility to update
the repository with the new information. The receiving site will usually manage a receipt
workspace that represents the latest configuration received. When a receipt workspace is used
it must also be updated from the deployment.

1.15.3 Receipt Workspace
Deployments represent the configuration of a workspace at a given release level. A
deployment to a partner site is comprised of two components:

• A source deployment containing a full or incremental update for the remote site

• Additional repository information sufficient to manage the delivered configuration as a
workspace at the partner site

A receipt workspace is a read-only copy of the workspace that exists at the sending site. It
cannot be altered at the receiving site. However, information can be imported from the receipt
workspace into a local workspace. Importing objects from a receipt workspace into locally
managed workspaces is performed by the import process.

1.15.4 Customers Doing Development
Many vendors provide source to customers so that the customer’s development staff can
enhance and extend the vendor's application. When the customer also has the Roundtable
system, it is possible for the vendor to deliver partner site deployments to the customer.
Partner site deployment facilitates the integration of application upgrades to the customer in a
controlled and managed way.

Software Configuration Management

 1-31

Refer to the following diagram:

Devel
Sports
Ver1

Sports
Ver1 001Devel 001Test

Site 0 - Vendor Site 1 - Customer Site

Deployment / Load

Import Process

RO

RO Read Only

As the vendor develops new enhancements to the Sports product, they are delivered to the
customer as partner site deployments. Partner site deployments contain both repository
information and the normal remote site update package.

At site 1, the customer imports from the Sports Ver1 workspace into the 001Devel workspace.
Where necessary, the customer can replace objects in the application with customized objects
(variants) to modify the vendor’s application. These custom objects are protected from
overwrite in future importation processes. The customer can also extend the functionality of
the application by adding new objects to the application.

The diagram shows the vendor's application deployment workspace with a name of Sports Ver
1. This is done to emphasize that the releases received by a remote site in this manner are
usually incremental releases, often called dot releases. When a vendor wants to distribute a
new major version of a software application, it is sometimes necessary for both the vendor and
the customer to manage a legacy system for a period of time.

Roundtable User's Guide

 1-32

The following diagram shows how this might be done:

Devel
Sports
Ver1

Sports
Ver1

001Devel

001Test

Site 0 - Vendor Site 1 - Customer Site

Deployment / Load

Import Process

RO

RO Read Only

Sports
Ver2

Sports
Ver2

RO

In the preceding diagram the new Sports Ver 2 application is delivered to the customer in a
new receipt workspace, and the workspace promotion strategy is changed at the customer’s
site to do integration and development with the new application. Legacy systems generally
require minor maintenance and modifications, and this can be done in the 001Test workspace.
The major work of integrating the new functionality of Sports Ver 2 is performed in the
001Devel workspace.

When the integration of the new system is completed, the legacy system can be dropped as
shown in the following diagram:

Devel
Sports
Ver2

Sports
Ver2 001Devel 001Test

Site 0 - Vendor Site 1 - Customer Site

Deployment / Load

Import Process

RO

RO Read Only

Software Configuration Management

 1-33

1.15.5 Custom Product Modules
In the preceding section you saw how it is possible for an application system to be delivered
into a receipt workspace at the customer site. Objects are then imported from the receipt
workspace into the customer's development workspace. Note that the customer can replace
objects in the application system with custom objects (variants) as required in the development
workspace without fear that these will be overwritten during future imports.

This protection from overwrite is accomplished by creating custom products and product
modules that belong to the customer site. The new objects created to replace an object in the
vendor's application are created under a product module belonging to the customer’s site. The
import process will not overwrite an object in the target workspace when the object’s product
module is different from that found in the source workspace. This protects the custom objects
from being overwritten.

To replace an object with a custom object in the application:

1. Create a custom product and product module that will own the new custom object if
necessary. You might already have custom products and product modules from some
previous modification.

2. Assign the custom product and product module to the customer's development workspace
sources if they are not already assigned. This is done through Roundtable's Workspace
Sources Window.

3. Choose File→New Object and enter the object type, name, and the name of the product
module owned by the customer site. The existing object source is provided as a starting
point for your new object.

1.15.6 Distributed Development Scenario # 1
One simple form of distributed development occurs when a single organization has two
development sites that cannot be connected to a central configuration repository. For this
example, assume that a cooperative software development effort is pursued by two
development teams separated geographically. Team A is located in India and team B is
located in California.

Each team has one configuration repository and one or more workspaces relating to their
different responsibilities. The teams have the following responsibilities:

Team A - India

• Primary Development

• Unit Testing

Roundtable User's Guide

 1-34

Team B - California

• System Testing

• Deployment to Customers

• Support

The following diagram describes the distributed development process with a workspace
network map:

Devel Test1 Test1 001Test2 001Ver1

001Test2

Site 0 - Team A in India Site 1 - Team B in California

Deployment / Load

Import Process

RO Read Only

RO

RO

The preceding workspace network map shows six workspaces. The objects in the Devel and
Test1 workspaces at site 0 can be modified by the members of team A at site 0. The objects in
the 001Test2 workspace at site 0 cannot be modified by team A, Instead, only the Partner Site
Replication utility can modify the contents of the 001Test2 workspace because it is a receipt
workspace. A receipt workspace is always a read-only workspace as indicated by the RO
designation in the diagram.

The objects in the Test1 workspace at site 1 cannot be modified by team B. Again, only the
Partner Site Replication utility can modify the contents of the Test1 workspace because it is a
receipt workspace.

The purpose of each of these workspaces is defined by the workflow of the teams:

Workspace Work Performed

Devel Primary development area.

Test1 Updates are imported from Devel into Test1. Unit testing is performed
in this area. Deployments to the partner site in India are performed from
this workspace.

Software Configuration Management

 1-35

Workspace Work Performed

001Test2 Updates are imported from Test1 into 001Test2. System testing and
emergency fixes are performed in this workspace. Objects fixed in this
workspace begin as a copy of the object imported from Test1. These
object copies belong to a product module that is owned by site 1.

Deployments for site 0 are made out of the 001Test2 workspace. This
makes it possible for the development team at site 0 to see any fixes
made to the software application by team B at site 1. By using the visual
difference facility team A can identify what changes should be
incorporated into the system.

001Ver1 Deployments to create product packaging are made from this workspace.

1.16 Distributed Development Scenario # 2
A more complex form of distributed development occurs when a single organization has two
development sites that cannot be connected to a central configuration repository and primary
development is shared. For this example, assume that a cooperative software development
effort is pursued by two development teams separated geographically. Team A is located in
India and team B is located in California.

Each team has one configuration repository and one or more workspaces relating to their
different responsibilities. The teams have the following responsibilities:

Team A - India

• Primary Development Accounting

• Unit Testing Accounting

Team B - California

• Primary Development Operations

• Unit Testing Operations

• System Testing for full system

• Deployment to Customers

• Support

Roundtable User's Guide

 1-36

The best way to describe the distributed development process is with a workspace network
map as shown below:

Devel Test1 Test1

001Ver1

Site 0 - Team A in India Site 1 - Team B in California

001Devel

001Test2001Test2

Deployment / Load

Import Process

RO Read Only

RO

RO

The workspace network map above shows seven workspaces. The objects in the Devel and
Test1 workspaces at site 0 can be modified by the members of team A at site 0. The objects in
the 001Test2 workspace at site 0 cannot be modified by team A. Instead, only the Partner Site
Replication utility can modify the contents of the 001Test2 workspace because it is a receipt
workspace. A receipt workspace is always a read-only workspaces as indicated by the RO
designation in the diagram.

The objects in the Test1 workspace at site 1 cannot be modified by team B. Again, only the
Partner Site Replication utility can modify the contents of the Test1 workspace because it is a
receipt workspace.

The purpose of each of these workspaces is defined by the workflow of the teams:

Workspace Work Performed

Devel Primary development area for Accounting. Used by team A at site 0. The
Operations code developed by team B at site 1 is imported from the
workspace 001Test2 into the Devel workspace. Thus the Devel
workspace contains the entire system. Members of team A can only
modify objects that belong to product modules owned by site 0.

Test1 Updates are imported from Devel into Test1. Unit testing is performed
in this area. Deployments to the partner site 1 are performed from this
workspace.

Software Configuration Management

 1-37

Workspace Work Performed

001Devel Primary development area for Operations. Used by team B at site 1.

001Test2 Updates are imported from Test1 into 001Test2. System testing and
emergency fixes are performed in this workspace. Objects fixed in this
workspace begin as a copy of the object imported from Test1. These
object copies belong to a product module that is owned by site 1.

Deployments for site 0 are made from the 001Test2 workspace. This
makes it possible for the development team at site 0 to see any fixes
made to the software application by team B at site 1. By using the visual
difference facility team A can identify what changes should be
incorporated into the system.

001Ver1 Deployments to create product packaging are made from this workspace.

Roundtable User's Guide

 1-38

2

The Tabletop

2.1 Introduction
Roundtable manages the collection of objects that make up a software application in a
Workspace. The Roundtable Tabletop provides you with an organized view of this Workspace
and places a number of important productivity tools within easy reach.

This overview of Roundtable Tabletop demonstrates how Roundtable is tightly integrated with
the Progress ADE.

Roundtable User's Guide

 2-2

2.2 Roundtable Tabletop
Welcome to the Roundtable Environment! You access most of the functions in the Roundtable
system through the Tabletop window shown below:

The contents of the Tabletop Object Browse change based upon the selected view. If the
Object Properties window (see Object Properties Window section) is open, the contents of the
window change as you select an object in the Object Browse.

The Tabletop is the main window you use to perform work. It consists of the following user
interface elements:

Tabletop Area Description

Menu bar A group of menus that provide access to many Roundtable
functions, such as adding new objects, searching for objects,
changing the view, and accessing other windows in the
system.

Toolbar The toolbar contains buttons that execute commonly required
operations.

Current Task A drop-down list from which you select a Task. Only the tasks
associated with the selected Workspace appear in the Task
drop-down list. (A Task is always associated with a single
Workspace).

Workspaces

Object Browse

Current/Recent Views

Toolbar

Current Task

Modules

Menu bar

TreeView

Filter Button

Status Bar

The TableTop

 2-3

Tabletop Area Description

Workspaces TreeView nodes by which you select the current Workspace.
Workspaces are represented by a file folder icon. Roundtable
connects the application databases for the selected
Workspace.

Modules TreeView nodes by which you select a Workspace Module.
An icon resembling sheets of paper represents Modules. The
currently selected Module is represents by a magnifying glass
over a sheet of paper.

Object Browse The Object Browse is for you to select an object or object
component to view or edit. Objects are the configuration items
that comprise your software application.

The kinds of objects in a Progress application include
program source files, binary bitmap files, text files,
documentation files and the schema objects that define your
database.

The information shown in the Object Browse varies with the
currently selected view.

Status Bar Indicated the current Workspace, Task and User.

Filter Button Displays a window that allows you to filter the objects shown
in the Object Browse for the currently selected Module. The
Filter Button is only enabled in Module view.

Current/Recent
Views

A drop-down list that indicates the current view, and allows
you to return to a recent view. The recent views list contains
up to 20 most-recent views.

2.3 Views
You control the content of the Tabletop by selecting a view. The views provided include:

• Module: Shows objects belonging to current Workspace Module and group.

• Task: Shows objects modified under current Task

• Xref: Shows all objects used by a specified object.

• Where Used: Shows all objects using a specified object.

• Version List: Shows all versions of selected object in any Workspace.

Roundtable User's Guide

 2-4

• Informal Xref: Shows all objects that use an informal object.

2.3.1 Module View
In Module View, the Object Browse contains objects belonging to the Module selected from
the TreeView. By default, Roundtable uses Group codes (user defined values that can be
entered for each object) to sort the objects in the Object Browse. You can assign the same
Group code to a set of closely related objects so they appear together in the Object Browse.

Follow these steps to use Module View.

1. Choose View→Objects in Module View or Module View button.

2. Use the TreeView to select a Module in the Workspace.
Only those objects in the selected Module appear in the Object Browse.

3. (Optional) Use the Filter Button to specify a filter that restricts objects. You can filter my
object Group, Type, object name, and Product Module.

The Object Browse contains the following fields:

Field Description

Group The object Group.

Object The object name.

The TableTop

 2-5

Field Description

Type The object Type.

Product
Module The object’s Product Module.

Version The object Version.

Status Displays object status as either C (complete) or W (work in process).

Share The object’s Share Status.

Description The object description.

2.3.2 Task View
The Task View fills the Object Browse with objects belonging to the Task specified in the
Task drop-down list. Only work-in-process tasks can be viewed in this manner. You must use
the Roundtable Tasks window to see the list of objects associated with completed tasks.

Follow these steps to use Task View.

1. Choose View→Objects in Task View or Task View button.

2. If the Task is not already selected, use the Task drop-down list to select a Task.

The Object Browse contains the following fields:

Roundtable User's Guide

 2-6

Field Description

Version The object version.

Object The object name.

Status Displays object status as either C (complete) or W (work in process).

PModule The object’s Product Module

Prev. Ver The previous version of the object.

Task # The object version’s Task (i.e. the current Task).

2.3.3 Xref View
The Xref View is useful for examining the architecture of your application and navigating
through the architecture quickly. You may go through your application hierarchy recursively
by selecting Xref on an object shown in the Object Browse presented by a previous Xref.

Follow these steps to use Xref View.

1. Select an object in any other view.

2. Choose View→Object Xref View or the Xref View button.
The Object Browse displays with all objects used by the selected object.

The TableTop

 2-7

The Object Browse contains the following fields:

Field Description
Object The name of the object.

Actions The types of actions performed on the referenced object by a compiled
procedure:

A Accessed
C Created
D Deleted
E Executed
F Function Definition
I Included
P Published
R Referenced
S Searched
U Updated
W DLL Entry
X External Reference

Xref Type The type of cross reference:

PROG Program
FILE File
INDEX Index
FIELD Field
INCLD Include file used

Roundtable User's Guide

 2-8

Field Description
SVAR Shared variable
SWF Shared Workfile
SFRM Shared Frame
WFLD Shared Workfile Field
PART Object part included
_FILE Schema_file
_FIELD Schema_field
_INDEX Schema_index
XINCLD External include
SOREF SmartObject Reference
DLL Windows DLL defined
FUNC Function Defined
EVENT Published, Subscribed, or Unsubscribed event

2.3.4 Where Used View
From the Where Used View, you can ensure that a change in the selected object is compatible
with each of its users. For example, when you change the arguments of an include file, you can
select the include file object, and use the Where Used View to navigate to each of the
procedures that use the include file.

Follow these steps to use Where Used View.

1. Select an object in any other view.

2. Choose View→Object Where Used View or the Where Used View button.
The Object Browse displays with all objects that use the selected object.

The TableTop

 2-9

The Object Browse contains the following fields:

Field Description
Object The name of the object.

Actions The types of actions performed on the referenced object by a
compiled procedure:

A Accessed
C Created
D Deleted
E Executed
I Included
R Referenced
S Searched
U Updated
W DLL Entry
X External Reference
F Function Definition
P Published

Xref Type The type of cross reference:

_FIELD Schema_field

Roundtable User's Guide

 2-10

Field Description
_FILE Schema_file
_INDEX Schema_index
DLL Windows DLL defined
EVENT Published, Subscribed, or Unsubscribed event
FIELD Field
FILE File
FUNC Function Defined
INCLD Include file used
INDEX Index
PART Object part included
PROG Program
SFRM Shared Frame
SOREF SmartObject Reference
SVAR Shared variable
SWF Shared Workfile
WFLD Shared Workfile Field
XINCLD External include

Source Type The type of source reference:

_FIELD Schema_field
_FILE Schema_file
_INDEX Schema_index
DLL Windows DLL defined
EVENT Published, Subscribed, or Unsubscribed event
FIELD Field
FILE File
FUNC Function Defined
INCLD Include file used
INDEX Index
PART Object part included
PROG Program
SFRM Shared Frame
SOREF SmartObject Reference
SVAR Shared variable
SWF Shared Workfile
WFLD Shared Workfile Field
XINCLD External include

2.3.5 Version List View
In the Version List View of an object, the Object Browse is filled with all versions of the
selected object regardless of the Workspace in which the versions were created. Each row in
the Object Browse shows a different version of the object. The Note and Task folders show

The TableTop

 2-11

information specific to the object version selected in the Object Browse. This makes it
possible to quickly review the changes made to the object in all Workspaces.

Follow these steps to use Versions List View.

1. Select an object in any other view.

2. Choose View→Object Version List View or Version View button.

The Object Browse contains the following fields:

Field Description

Version The version number.

Object The object name.

Status Displays object status as either C (complete) or W (work in process).

PModule The object version’s Product Module.

Roundtable User's Guide

 2-12

Field Description

Prev. Ver The version from which a version was created.

Task# The Task under which the version was created.

Note: If the object has been moved from another product Module using V9.1A or higher, the
versions of the object in the other Module appear in red.

2.3.6 Informal Object Xref
The Informal Object Xref is a cross-reference that shows each informal object used by a
selected object. Informal objects include items that are not explicitly tracked as objects by
Roundtable.

Follow these steps to use Informal Object Xref.

1. Choose View→Informal Object Xref.
The Select Informal Xref Parameters dialog box appears.

2. Select an object type from the Referenced Object Type drop-down list.

3. Type a name in the Referenced Object Name field, then choose the OK button.

The TableTop

 2-13

The Object Browse contains the following fields:

Field Description
Object The name of the object.

Actions The types of actions performed on the referenced object by a compiled
procedure:

A Accessed
C Created
D Deleted
E Executed
F Function Definition
I Included
P Published
R Referenced
S Searched
U Updated
W DLL Entry
X External Reference

Xref Type The type of cross reference:

_FIELD Schema_field
_FILE Schema_file
_INDEX Schema_index
DLL Windows DLL defined
EVENT Published, Subscribed, or Unsubscribed event
FIELD Field
FILE File
FUNC Function Defined
INCLD Include file used
INDEX Index
PART Object part included
PROG Program
SFRM Shared Frame
SVAR Shared variable
SWF Shared Workfile
WFLD Shared Workfile Field
XINCLD External include

Source Type The type of source reference:

_FIELD Schema_field
_FILE Schema_file
_INDEX Schema_index
DLL Windows DLL defined

Roundtable User's Guide

 2-14

Field Description
EVENT Published, Subscribed, or Unsubscribed event
FIELD Field
FILE File
FUNC Function Defined
INCLD Include file used
INDEX Index
PART Object part included
PROG Program
SFRM Shared Frame
SOREF SmartObject Reference
SVAR Shared variable
SWF Shared Workfile
WFLD Shared Workfile Field
XINCLD External include

2.3.7 Recent Views
In the Recent Views List, the Object Browse displays a history of the navigation you have
performed in a Workspace through the selection of various views on various objects.

Follow these steps to use Recent View.

1. Choose the down-arrow button to the right of the Views box above the Object Browse.
A popup menu of recent views appears.

2. To switch to any of these previous views, select an item from the popup menu.

The TableTop

 2-15

Entries are created in the recent list each time you change the current view. The list can
contain up to 20 views.

2.4 Object Properties Window
You can view information about the select object by viewing the Object Properties window.
To view the Object Properties window, choose View->Object Properties from the Tabletop
menu.

As you select an object in the Object Browse, the contents of the folders of the Object
Properties window are filled with information about the selected object or object component.
Choosing the folder tab brings the contents of the folder to the top so that you can see what it
contains. There folder types available vary with the current type of object and view selected.
The folders provided include:

Spec Object version information for selected object version

Config Configuration of object in Workspace

Note Description of change made for selected object version

Task Task information for selected object version

Roundtable User's Guide

 2-16

Dbase Database connection parameters for PDBASE object and DBase
menu

Table Table header definition for PFILE object and table menu

Field Field attributes defined for PFIELD object and field menu

The following sections provide a brief description of each folder available in the system. More
detailed descriptions of these folders appear in Chapter 6, "Objects."

2.4.1 Spec Folder
The Spec folder contains the specification of the object version selected in the Object Browse.
The specification information includes the object's version information, a brief synopsis of the
object's function and the status of the object. The Spec Tab is available for all objects.

For more detailed information, see the "Spec Folder Description" section in Chapter 6.

The TableTop

 2-17

2.4.2 Config Folder
The Config folder contains the configuration of the object currently selected in the Object
Browse. This configuration information determines how operations on the object are handled
in the Workspace. This folder is only shown for PCODE and DOC type objects. Most of the
fields are not enabled for DOC type objects.

For more detailed information, see the "Config Folder Description" section in Chapter 6.

2.4.3 Note Folder
The Note folder contains the update history note of the object version selected in the Object
Browse. Each time you close a file you have modified, Roundtable prompts you for this note.
This tab is available for all objects.

For more detailed information, see the "Note Folder Description" section in Chapter 6.

Roundtable User's Guide

 2-18

2.4.4 Task Folder
The Task folder contains information about the Task under which the object version selected
in the Object Browse was created. This tab is available for all objects.

For more detailed information, see the "Task Folder Description" section in Chapter 6.

2.4.5 DBase Folder
The DBase folder associates a physical database with the PDBASE object selected in the
Object Browse. The information in this folder specifies where the database resides and the
connection parameters required to connect to the database. The Connect Order field allows
you to specify the order in which multiple databases in a Workspace are connected. The first
application database connected in a Workspace is connected with the DICTDB alias.

For more detailed information, see the "DBase Folder Description" section in Chapter 6.

The TableTop

 2-19

2.4.6 Table Folder
The Table folder contains the PFILE associated with the PFILE object selected in the Object
Browse.

For more detailed information, see the "Table Folder Description" section in Chapter 6.

2.4.7 Field Folder
The Field folder contains the attributes of a field defined by a PFIELD object. This folder is
available when a PFIELD object is selected in any view.

For more detailed information, see the "Field Folder Description" section in Chapter 6.

2.5 Common Operations from the Tabletop
The first action you take after entering the Roundtable environment is to select a Workspace
from the TreeView on the Tabletop. Selecting a Workspace causes Roundtable to setup your
environment so that you can view the contents of the Workspace.

Here is the result of selecting the "Devel" Workspace in the TreeView. Note that the Tabletop
defaults to a Module View.

Roundtable User's Guide

 2-20

You select Modules from the child nodes of the Workspace folders in the TreeView list. Here
is the result of changing the selected Module to the Module "gui":

The TableTop

 2-21

The Object Browse now contains those objects belonging to the gui Module of the Devel
Workspace.

2.5.1 Creating a Task
Before you can modify objects in the Workspace you must check out the object under a work-
in-process Task. To create a Task you choose Tasks→Task Maintenance from the Tabletop
menu and then create the Task using the Tasks Window shown below.

For detailed instructions on creating tasks, see the "Adding a Task" section in Chapter 5.

2.5.2 Finding an Object
From the Tabletop, you can search for any type of object or object group. Roundtable even
locates objects not in the current Workspace Module and allows you to change to their
Workspace Modules automatically.

1. Choose Edit→Find Object from the Tabletop menu bar. The Find Object in Workspace
dialog box appears:

Roundtable User's Guide

 2-22

2. Optionally select an Object Type using the Type drop-down list.

3. Enter a partial or full search pattern in the Object field. The pattern can contain wildcard
characters * (multiple characters) and ? (single character).

4. Choose the Search button. Roundtable searches for objects that match the Type that you
selected and the pattern and that you entered.

5. If Roundtable finds one or more objects matching your search criteria, those objects are
displayed in the Objects browse on the lower portion of the dialog. Otherwise, a message
appears.

6. To select a found object, select the object in the Objects browse on the lower portion of
the dialog and choose the select button or double-click on the object.

2.5.3 Loading an Object into AppBuilder Directly from the
Tabletop
1. Ensure that AppBuilder is running.

2. Select an object in the Object Browse.

3. Choose either the Edit in AppBuilder button or View in AppBuilder button on the
Tabletop toolbar. Optionally, if the object is formatted for AppBuilder, you can instead
double-click on the object to open it in AppBuilder.

NOTE: You cannot open an object for editing if it is not WIP under the currently selected
Task.

The TableTop

 2-23

2.5.4 Loading an Object from AppBuilder
When Roundtable is running, the Progress AppBuilder redirects all of its file open, save, save-
as, and close activities to the Tabletop. For example, when you choose File→Open from the
AppBuilder menu bar, the Roundtable Open Object window appears as shown below.

Also, the caption of the title bar of the Tabletop window changes to “ADE FILE OPEN”.
Select an object as described in “Loading an Object into AppBuilder Directly from the
Tabletop”. If necessary you can check out the object before choosing to open it.

2.5.5 Loading an Object into a Procedure Editor Window Directly
from the Tabletop
1. Select an object in the Object Browse.

2. Choose either the Edit in Procedure Editor button or View in Procedure Editor button on
the Tabletop toolbar. Optionally, if the object is not formatted for AppBuilder, or
AppBuilder is not running, you can instead double-click on the object to open it in a
Procedure Editor window.

NOTE: You cannot open an object for editing if it is not WIP under the currently selected
Task.

2.5.6 Loading an Object from a Procedure Editor Window
When Roundtable is running, the Progress Procedure Editor redirects all of its file open, save,
save-as, and close activities to the Tabletop. For example, when you choose File→Open from
the Procedure Editor menu bar, the Roundtable Open Object window appears as shown below.

Roundtable User's Guide

 2-24

Also, the caption of the title bar of the Tabletop window changes to “ADE FILE OPEN”.
Select an object as described in “Loading an Object into a Procedure Editor Window Directly
from the Tabletop”. If necessary you can check out the object before choosing to open it.

2.5.7 Opening Non-Progress Objects
Often, an application includes non-Progress source files. Bitmaps are a good example of this.
You must have defined a subtype that uses a Progress procedure, such as
rtb/p/rtb_open.p, to launch an appropriate editor for the file based on the file’s
extension. This procedure queries the Windows registry to check what application is
associated with files having the extension of the file selected and then launches that
application against the selected file.

1. Select a non-Progress object in the Object Browse.

2. Open the object by double-clicking. The application associated with file’s extension is
launched. If the object is not checked out under your current Task, a dialog box opens
warning you that the object is read-only. This means that you cannot save any changes
you make to the object in the procedure window.

3. When finished viewing/editing the object, close the associated application.

4. If the object was checked out then Choose File→Unlock Object to clear the lock on the
object. Any locks will be cleared when you exit your Roundtable session as well.

NOTE: External applications launched by Roundtable can write changes to the files loaded
into them even if these files are not checked out! This can lead to problems for other
users in the system and possible loss of the changes made to the file. Do not save
changes made to read-only objects in external applications.

The TableTop

 2-25

3

Roundtable Administration

3.1 Introduction
This chapter discusses the following administrative tasks:

• Starting and exiting Roundtable

• Customizing Roundtable using the Windows registry

• Mapping your current Progress application

• Adding and maintaining products and Product Modules

• Adding and maintaining Subtypes

• Setting up your system parameters

• Setting up security

• Dumping and loading your repository database

• Configuring Roundtable, with a step-by-step summary

• Loading your application, with a step-by-step summary

Roundtable User's Guide

 3-2

3.2 Shortcut Properties
When adding a shortcut the following properties should be used:

• Description: Roundtable

• Target Location:

Prowin32.exe [database connection parameters] –p [fully qualified path to _rtb.r]

• Start in (example): c:\rtbwork

Note that each user must have their own working directory (Start in). Working directories
cannot be shared.

3.3 Starting Roundtable
Follow these steps to start Roundtable:

1. Run Roundtable using the Roundtable application shortcut. The Roundtable Login dialog
box appears.

Type your user ID and password.

2. If no users have been defined in the Roundtable repository, the sysop user must be
created. For information on creating user accounts, see the "Security" section in this
chapter

3. Choose the OK button. The Roundtable Tabletop and Progress startup procedure (the
Progress Desktop by default) appear.

3.4 Exiting Roundtable
Choose File→Exit from the Progress startup procedure (the Progress Desktop by default) to
close Roundtable along with your Progress session.

If you choose File→Exit Roundtable from the Tabletop, then you can re-start Roundtable at
any time by choosing Tools→Roundtable from AppBuilder or the Procedure Editor.

Roundtable Administration

 3-3

3.5 Roundtable in the Windows Registry
Roundtable stores workstation-specific information in the Windows Registry, in the key:
HKEY_CURRENT_USER/Software/Roundtable/<version number>. There is no need to edit
this information manually as all of this information is stored by Roundtable as necessary. The
following table lists each value stored for the workstation:

Key Value Name Value Data
Compile FullComp This logical value of yes or no

indicates whether an object should
compile with xref when it is assigned to
a Workspace. Set this option using the
menu selection Admin→Preferences.

 ShowHtmlWindow This logical value of yes or no
indicates whether to display the
character status window during
compilation of Speed Script in HTML
objects. Set this option using the menu
selection Admin→Preferences.

Database ConnnectWorkspaceDBs This logical value of yes or no
indicates whether to connect the
Roundtable client to the Workspace
database(s) when a Workspace is
selected. Set this option using the menu
selection Admin→Preferences.

Paths <AS Partition Name> The remote path entered for the
specified AppServer partition for
uploading workspace objects to an
AppServer partition. These values are
set when you enter a remote path using
the Roundtable Server Upload tool.

Startup StartupProcedure Indicates the Progress procedure
(AppBuilder, Desktop, or Procedure
Editor) to startup when initializing the
Roundtable session. . Set this option
using the menu selection
Admin→Preferences.

UserPrompts ReadOnlyPrompt Logical value. A value of No indicates
that an edit action on an object in the

Roundtable User's Guide

 3-4

Key Value Name Value Data
Object Browse table will display a
message box that explains to the user
that it is necessary to checkout the
object before it can be edited. Set this
option in the dialog box reached
through the menu selection
Admin→Preferences.

VisDiff CommandLine Specifies the command for starting
your visual difference application for
comparing object sources. Set this
option using the menu selection
Admin→Preferences.

Window Size Tabletop Width, Height size (pixels) of the
Tabletop. Stored when you exit the
Tabletop.

WindowPosition Tabletop Row, Column (characters) position of
the Tabletop. Stored when you exit the
Tabletop.

3.6 User Preferences
You use the User Preferences dialog a to specify a number of Roundtable settings that affect
Roundtable. To change these Roundtable settings, choose Admin→Preferneces from the
Tabletop menu. The Roundtable User Preferences dialog appears:

Roundtable Administration

 3-5

The following fields can be found in the Properties Dialog:

Item Description

Compile w/XREF on
object assign

Activate to compile objects with xref when prompted to compile
an object on assignment to a Workspace.

Show HTML compile
window

Activate to display the character status window when compiling
HTML objects containing SpeedScript.

Connect workspace
databases

Activate to connect the Roundtable session to the Workspace
database(s) when a Workspace is selected. Normally, this option
should be activated. However, if you are developing remotely,
with via an AppServer connection to the Roundtable repository,
you may wish to deactivate this option.

Show dialog before
editing "Read Only"
program?

Activate to display a message box that explains to the user that it
is necessary to checkout the object before it can be edited.

Suppress version
notes prompt

Activate to suppress the prompt for version notes after closing
an object opened for edit.

Startup Procedure Specifies the Progress procedure (AppBuilder, Desktop, or
Procedure Editor) to run when starting Roundtable.

Roundtable User's Guide

 3-6

Item Description

Visual Diff
Command

Specifies the command line for running you visual differencing
application. The command line should include numbered
parameters that will be substituted at runtime as follows:

“%1” – Pathname to first file
“%2” – Pathname to the second file
“%3” – Title for first file
“%4” – Title for second file

3.7 Configuration Hierarchy
The first and perhaps most difficult step in setting up the Roundtable system is defining your
current configuration hierarchy. The configuration hierarchy is a map of the contents of your
application and usually corresponds closely to the architecture of your system.

If you are building a system from scratch, then defining an application architecture that is
intuitive and simple to manage in Roundtable can be accomplished by following these rules:

• Divide your system into products that are more or less independent of one another. Often
one central product provides general services to other products, which are dependent on
those services, but the central product should not be dependent on any other product.

For example, consider a suite of applications consisting of General Ledger (GL),
Accounts Payable (AP), Accounts Receivable (AR), Pawnshop Point of Sale, and
Furniture Store Management. All of these applications may need a set of general services,
such as menu management, security, and telecommunications. An effective way of
defining products is to group GL, AP, and AR into a product called Accounting. Make the
Pawnshop Point of Sale and Furniture Store Management separate products and make the
general services into a product called Core System. Because these products are defined
separately, it will be easy to package them individually for deployment later.

• Divide each product into Product Modules that are well-defined subsets of the functional
content of the product. In the previous example, the Accounting product has at least three
modules: GL, AP, and AR. Both the Pawnshop Point of Sale and the Furniture Store
Management product may have many modules.

• Associate a directory with each Product Module by assigning Workspace Modules.

Roundtable provides three logical levels of configuration hierarchy: product, Product Module,
and object. If you have an existing physical configuration hierarchy expressed as a deep set of
subdirectories, these can be mapped using Workspace Modules. Before loading an existing
configuration hierarchy, you must understand it. Then you develop a strategy for mapping
these subdirectories to Product Modules.

There are three common methods of organizing file systems to express a configuration

Roundtable Administration

 3-7

hierarchy:

• Application group directories

• Directories by component type

• Application group and component type

3.7.1 Application Group Directories
The most common way of organizing system components is to group source files by Product
Module definitions. This is common because structured design methodologies involve the top-
down decomposition of a software application by function. The functional hierarchy translates
naturally into a hierarchical directory structure. For example, in an accounting package with
an accounts payable Product Module and an accounts payable Workspace Module, your
directory structure might look like this:

Directory Directory Content

/abc_system ABC accounting and POS system directory

/abc_system/ar Accounts Receivable

/abc_system/ap Accounts Payable

/abc_system/gl General Ledger

/abc_system/pos Point of Sale

Roundtable User's Guide

 3-8

This simple configuration hierarchy easily maps into the three-level configuration hierarchy
provided by Roundtable. The /abc_system directory becomes the workspace root path and
each subdirectory is then mapped as shown below:

Product Prod Module Workspace Module Subdirectory

Accounting AR AR ar

 AP AP ap

 GL GL gl

POS POS POS pos

3.7.2 Directories by Component Type
Another common way to arrange directory structures is by the types of components found in
the system. This organization is typical when many discrete components are reused across
functional boundaries in a software application system. A directory structure organized by
component type might look like this:

Directory Directory Content

/abc_system ABC accounting and POS system directory

/abc_system/edit Data entry procedures

/abc_system/rpt Reporting procedures

/abc_system/batch Batch procedures

This configuration hierarchy maps into the product and Product Module configuration
hierarchy provided by Roundtable, as shown below:

Product Prod Module Workspace Module Subdirectory

Accounting AR-Edit Edit edit

 AP-Edit Edit edit

 GL-Edit Edit edit

 AR-Rpt Rpt rpt

Roundtable Administration

 3-9

Product Prod Module Workspace Module Subdirectory

 AP-Rpt Rpt rpt

 GL-Rpt Rpt rpt

 AR-batch Batch batch

 AP-batch Batch batch

 GL-batch Batch batch

POS POS-Edit Edit edit

 POS-Rpt Rpt rpt

 POS-batc Batch batch

In this mapping, objects that belong to multiple Product Modules coexist in the same
subdirectory. If you are developing your system from scratch, do not use this type of directory
hierarchy in your application. Instead, use a functional hierarchy if possible.

3.7.3 Directories by Application Group and Component Type
It often makes sense to combine a functional hierarchical system architecture with one based
on component types. A combined directory structure may look like this:

Directory Directory Content

/abc_system ABC accounting and POS system directory

/abc_system/ar/edit Accounts Receivable data entry procedures

/abc_system/ar/rpt Accounts Receivable report procedures

/abc_system/ar/batch Accounts Receivable batch procedures

/abc_system/ap/edit Accounts Payable data entry procedures

/abc_system/ap/rpt Accounts Payable report procedures

Roundtable User's Guide

 3-10

Directory Directory Content

/abc_system/ap/batch Accounts Payable batch procedures

/abc_system/gl/edit General Ledger data entry procedures

/abc_system/gl/rpt General Ledger report procedures

/abc_system/gl/batch General Ledger batch procedures

/abc_system/pos/edit Point of Sale data entry procedures

/abc_system/pos/rpt Point of Sale report procedures

/abc_system/pos/batch Point of Sale batch procedures

This configuration hierarchy can be mapped into Roundtable as shown below:

Product Prod Module Workspace Module Subdirectory

Accounting AR-Edit AR-Edit ar/edit

 AP-Edit AP-Edit ap/edit

 GL-Edit GL-Edit gl/edit

 AR-Rpt AR-Rpt ar/rpt

 AP-Rpt AP-Rpt ap/rpt

 GL-Rpt GL-Rpt gl/rpt

 AR-batch AR-Batch ar/batch

 AP-batch AP-Batch ap/batch

 GL-batch GL-Batch gl/batch

POS POS-Edit POS-Edit pos/edit

 POS-Rpt POS-Rpt pos/rpt

 POS-batc POS-Batch pos/batch

Roundtable Administration

 3-11

3.7.4 Using Subtypes to Extend the Configuration Hierarchy
If you have an especially complex configuration hierarchy, use Subtypes to model some
subdirectory organization rules. You define Subtypes to ascribe attributes to PCODE objects.
One of the attributes you can define is a subdirectory in which a file associated with the
PCODE object will be stored.

Consider again the directory structure from the previous section:

Directory Directory Content

/abc_system ABC accounting and POS system directory

/abc_system/ar/edit Accounts Receivable data entry procedures

/abc_system/ar/rpt Accounts Receivable report procedures

/abc_system/ar/batch Accounts Receivable batch procedures

/abc_system/ap/edit Accounts Payable data entry procedures

/abc_system/ap/rpt Accounts Payable report procedures

/abc_system/ap/batch Accounts Payable batch procedures

/abc_system/gl/edit General Ledger data entry procedures

/abc_system/gl/rpt General Ledger report procedures

/abc_system/gl/batch General Ledger batch procedures

/abc_system/pos/edit Point of Sale data entry procedures

/abc_system/pos/rpt Point of Sale report procedures

/abc_system/pos/batch Point of sale batch procedures

Roundtable User's Guide

 3-12

This configuration hierarchy can be mapped into Roundtable more simply with the use of
Subtypes as shown below:

Product Prod Module Workspace Module Sub-Directory

Accounting AR AR ar

 AP AP ap

 GL GL gl

POS POS POS pos

Subtype Sub-Directory

EditProc edit

EditIncld edit

BatchProc batch

BatchIncld batch

RptProc rpt

RptIncld rpt

When you create a new PCODE object in a module, Roundtable constructs part of the path to
the object based on the Product Module assignment. It then constructs the rest of the path
based on the subtype you assigned to the object. For example, if you created a new data entry
program called order.p for the AR Product Module and assigned it a subtype of EditProc,
Roundtable performs the following logic to decide what directory to put it in:

1. Given the assignment of the AR Product Module, Roundtable finds the AR Workspace
Module.

2. The directory associated with the AR Product Module is "ar", so Roundtable adds this to
the workspace root path to create "/abc_system/ar".

3. Roundtable finds the subtype EditProc and adds its associated directory, "edit", to the
directory path to create "/abc_system/ar/edit".

Using Subtypes in this manner can be useful when it is necessary to map an existing
configuration hierarchy. However, you should avoid this style of configuration hierarchy

Roundtable Administration

 3-13

because it leads to duplication in the Subtypes. In the example above, there might be no
difference between the EditProc and BatchProc subtype specifications except for their
associated subdirectories.

For more detailed information on Subtypes, see the "Subtypes" section in this chapter.

3.8 Products
Once you have defined a strategy for mapping your existing or new system into Roundtable,
you must create the necessary products and Product Modules. This section provides detailed
instructions for adding this information to the Roundtable repository.

3.8.1 Products Window Description
Products and Product Modules are managed in the Roundtable Products window:

Item Description

Product Browse A browse listing the currently defined Products.

Product A fill-in for the Product code. Product codes can be up to 8
characters long.

Name A fill-in field for the product description. It can be up to 40
characters long.

Product Modules A tab folder that displays each Product Module defined for the

Roundtable User's Guide

 3-14

Item Description
current product code.

3.8.2 Adding a Product
Follow these steps to add a new product:

1. Choose Admin→Products from the Tabletop menu. The Roundtable Products window
appears.

NOTE: You must be logged in as the sysop user to perform Product maintenance.

2. Choose the Add Record button ().

3. Type the code for the new product. The alphanumeric code should describe the major
function of the product (acct for accounting, ops for operations, etc.). If your site number
is not 0, you must enter the three-digit site number as a prefix for the code. If your site
number is 0, you cannot begin your code with a number.

4. Type the name or a description of the new product in the Name field.

5. Choose the Save Record button (). The new product appears in the Product browse in
the Roundtable Products window.

6. Add Product Modules belonging to the new product. For information on how to add
Product Modules, see the "Adding a Product Module" section in this chapter. You may
add Product Modules at a later date if necessary.

7. Choose File→Exit to leave the window.

3.8.3 Editing a Product Description
You can only change the product description field for a product. If you want to change the
product code, delete the product and re-add it.

Follow these steps to edit a product description.

1. Choose Admin→Products from the Tabletop menu. The Roundtable Products window
appears.

NOTE: You must be logged in as the sysop user to perform Product maintenance.

2. From the Product browse, select the product that you want to edit.

3. Edit the Name of the product, and then choose the Save Record () button.

4. Choose File→Exit to leave the window.

Roundtable Administration

 3-15

3.8.4 Deleting a Product
You must delete all Product Modules within a product before you delete the product itself.

Follow these steps to delete a product.

1. Choose Admin→Products from the Tabletop menu. The Roundtable Products window
appears.

NOTE: You must be logged in as the sysop user to perform Product maintenance

2. From the Product browse, select the product that you want to delete.

3. Choose the Delete Record () button. A Warning dialog box appears.

4. Choose the Yes button to delete the product or the No button to cancel this operation.

5. Choose File→Exit to leave the window.

3.8.5 Product Report
The Product Report prints a list of the contents of the product.

Follow these steps to print the report:

1. Choose Reports→Product→Product Report from the Tabletop menu. The Product Report
window appears.

2. Select the report options that you want, and then choose the OK button.

3. The report appears in a text viewer window.

4. Close the text viewer window to close the report.

The following fields are found in the Product Report window:

Field Description

Product A drop-down list to select the Product that you want

Roundtable User's Guide

 3-16

Field Description
to report on.

Show Workspace Usage Prints a list of the workspaces that include the
Product Modules in this product.

Show Objects Prints the latest object version defined in each
Product Module.

Show Object Details Prints the object version description.

3.8.6 Adding a Product Module
After you create a product, follow these steps to add the Product Modules:

1. Choose Admin→Products from the Tabletop menu. The Roundtable Products window
appears.

NOTE: You must be logged in as the sysop user to perform Product maintenance.

2. From the Product browse, select the product that you want to add a Product Module to.

3. Select the Product Modules tab folder. The Product Modules form appears.

4. Choose the Add Record button ().

5. Type the code for the new Product Module. This alphanumeric code should describe the
function of the module. If your site number is not 0, you must enter the three-digit site
number as a prefix for the Product Module. If your site number is 0, you cannot begin
your code with a number.

Roundtable Administration

 3-17

6. Fill in the Product Module Description field for the Product Module.

7. Select an existing Workspace Module definition to associate with the new Product
Module. If no existing Workspace Module definition is appropriate for the new Product
Module you will first have to create one. For instructions on Workspace Module
definitions, see the "Workspace Module Definitions" section in this chapter.

The primary purpose of the Workspace Module definition is to specify the physical
location of code belonging to the Product Module associated with the Workspace Module
definition.

8. Choose the Save Record button (). The new Product Module appears in the Product
Modules browse on the folder.

9. Choose File→Exit to leave the window.

3.8.7 Editing a Product Module Description
You can change the Product Module description field but not the Product Module code. To
change a Product Module code, delete the Product Module and re-add it with the new code.
You cannot delete a Product Module if any objects have been assigned to it.

Follow these steps to edit a Product Module description.

1. Choose Admin→Products from the Tabletop menu. The Roundtable Products window
appears.

NOTE: You must be logged in as the sysop user to perform Product maintenance.

2. From the Product browse, select the product that contains the Product Module that you
want to edit.

3. Select the Product Modules tab folder. The Product Modules form appears.

4. From the Product Modules list, select the Product Module to edit.

5. Change the fields for the Product Module as necessary.

6. Choose the Save Record button ().

7. Choose File→Exit to leave the window.

3.8.8 Deleting a Product Module
If you have ever used the Product Module, you cannot delete it (even if you aren't using the
Product Module now).

Follow these steps to delete a Product Module.

Roundtable User's Guide

 3-18

1. Choose Admin→Products. The Roundtable Products window appears.

NOTE: You must be logged in as the sysop user to perform Product maintenance.

2. From the Product browse, select the product that contains the Product Module that you
want to delete.

3. Select the Product Modules tab folder. The Product Modules form appears.

4. From the Product Modules list, select the Product Module to delete.

5. Choose the Delete button (). A warning dialog box appears.

6. Choose the Yes button to delete the Product Module.

7. Choose File→Exit to leave the window.

3.8.9 Product Module Report
The Product Module Report prints a detailed report of the objects in a Product Module,
including the object code, description, version number, status, subtype, and additional notes
for each object.

Steps to print the Product Module Report:

1. Choose Reports→ProductsProduct→ModulesReport from the Tabletop menu. The
Product Module Report window appears.

5. Select the report options that you want, and then choose the OK button.

6. The report appears in a text viewer window.

7. Close the text viewer window to close the report.

The following fields are found in the Product Report window:

Roundtable Administration

 3-19

Field Description

Product The Product that contains the Product Module that
you want to report on.

Pmodule The Product Module that you want to report on.

Show Workspace Usage Prints a list of the workspaces that include this
Product Module.

Show Objects Prints the latest object version defined in each
Product Module.

Show Object Details Prints the object version description.

3.9 Workspace Module Definitions
The primary purpose of Workspace Module definitions is to specify the physical location of
code relative to the workspace root directory. Essentially they contain a relative subdirectory
that is concatenated to the workspace root directory to render a full path to location of objects
in the system. Workspace Module definitions allow you to map an arbitrarily deep level of
directory structures to the two-level configuration hierarchy provided by Roundtable. While
the workspace root directory is always different among the workspaces managed by the
system, Workspace Module definitions are consistent across all workspaces. Workspace
Module definitions are associated with Product Modules in a one-to-many relationship. A
single Workspace Module definition can be associated with zero or more Product Modules.
Unassigned Workspace Module definitions are ignored by the system.

Use this window for maintaining Workspace Module definition records:

Roundtable User's Guide

 3-20

Field Description

Module The Workspace Module name.

Description This is a long description of the Workspace Module
is used in reports.

Directory This is a relative directory path that is appended to
the workspace root path to specify a subdirectory in
the workspace in which objects are stored. The
objects stored in this subdirectory are those that
belong to Product Modules associated with the
Workspace Module definition.

r-directory This is a relative directory path that is appended to
the workspace root path to specify a subdirectory in
the workspace in which compiled objects are stored.
The compile objects stored in this subdirectory are
those that belong to Product Modules associated with
the Workspace Module definition. If this field is left
blank, compiled objects will reside in the same
directory as the source object.

Naming Code This is an optional value that is used by a user-
specified naming routine for Subtypes assigned to
objects created in Product Modules associated with
this Workspace Module definition.

3.9.2 Adding a Workspace Module Definition
You can access the Workspace Module Definitions window using the following steps:

1. Choose Admin→Workspace Module Definitions from the Tabletop menu. The
Roundtable Workspace Module Definitions window appears.

2. Choose the Add Record button ().

3. Enter values for the Name, Description, Source Directory, .r Code Directory, and Naming
Code fields.

4. Choose the Save Record button ().

5. Choose File→Exit to leave the window.

Roundtable Administration

 3-21

3.9.3 Editing a Workspace Module Definition
You may edit any of the fields in the Workspace Module definition except the name of the
module. However, Roundtable will not rename directories or move objects to accommodate
your changes. A Workspace Module definition defines the physical location of objects under
the workspace root directory. If you change the source directory specification you will have to
manually move any affected source code in each workspace that contains a module defined by
the Workspace Module definition. If you change the .r Code Directory you should delete the
affected .r code and then re-compile the affected module. Use of the Naming Code field is
optional and the affect of changing it application specific.

You may safely change the Description of the Workspace Module definition.

You may access the Workspace Module Definitions window by choosing the Maintenance
button in the Products Window as shown in the following steps:

1. Choose Admin→Workspace Module Definitions from the Tabletop menu. The
Roundtable Workspace Module Definitions window appears.

2. Select a Workspace Module definition in the browse table.

3. Edit the Description, Source Directory, .r Code Directory, and Naming Code fields as
necessary.

4. Choose the Save Record button ().

5. Choose File→Exit to leave the window.

3.9.4 Deleting a Workspace Module Definition
You can delete a Workspace Module definition that has not been assigned to any Product
Module.

You can access the Workspace Module Definitions window by choosing the Maintenance
button in the Products Window as shown in the following steps:

1. Choose Admin→Workspace Module Definitions from the Tabletop menu. The
Roundtable Workspace Module Definitions window appears.

2. Select a Workspace Module definition in the browse table.

3. Choose the Delete Record button (). A warning box appears.

4. Choose the Yes button. The Workspace Module definition is deleted.

5. Choose File→Exit to leave the window.

Roundtable User's Guide

 3-22

3.10 Subtypes
Subtypes control the naming, management, creation, and storage of PCODE objects. Using
Subtypes can help enforce coding standards and reduce the number of objects tracked in your
system. They can also make training new programmers on your system much easier since
Roundtable provides reminders about the requirements of each subtype. By using Subtypes,
you reduce the number of repetitive steps necessary for creating new PCODE objects. When
creating a subtype, you can:

• Specify a naming program, which tests the naming convention of the object to ensure
consistency.

• Specify a build program to run when creating an object, like a screen generator.

• Specify a template to use when Roundtable builds an object.

• Specify up to nine parts (individual files), related by a predefined naming convention, that
Roundtable will treat as one object. Then, when checking out objects, you check out only
one object instead of nine. This ensures that an object with multiple parts is treated as a
single entity.

3.10.1 Code Subtypes Window Description
Use the following Code Subtype window to define Code Subtypes:

The following fields are found in the Subtype Window:

Tab Field Description

Subtype Subtype The Code Subtype name.

Roundtable Administration

 3-23

Tab Field Description

Assigned A toggle box that indicates whether an object
with the currently selected subtype exists.
Once a subtype has been assigned to an object,
the subtype cannot be deleted and some editing
operations are disallowed.

Name Program Display only. Provided for backward
compatibility.

Build Program Display only. Provided for backward
compatibility.

Edit Program A fill-in for the name of the edit program. For
example, if objects of this subtype are to have
a specific format, the edit program can be a
custom editor. See the "Edit Program:
rtb/p/rtb_open.p" section in Appendix A for an
example of an edit program. See the
"Managing Application Data with the Edit
Program" section in Appendix A for a full
description of the edit program.

Program A toggle box that indicates whether objects of
this subtype are Progress-compilable programs
(Include files are not considered programs).

Roundtable User's Guide

 3-24

Tab Field Description
 r-code Dir The relative r-code directory for the subtype.

The path for r-code is determined as follows:

1. If r-code directory defined for
Workspace Module only:
 <wspace-path>/<module-rcode-
path>/object.r

2. If r-code directory defined for
subtype only:
 <wspace-path>/<subtype-rcode-
path/object.r

3. If r-code directory for both
Workspace Module AND
 subtype:
<wspace-path>/<module-rcode-
path>/<subtype-rcode-path>/object.r

Note: Roundtable will not move .r code for
you if you change the value of the .r code
directory for this subtype. If you change this
value, you will have to move any subtype .r
code manually, or recompile programs of this
subtype.

Subtype Parts A subtype may be comprised of up to ten
system files. The first nine of these files are
called parts and are user-defined. The tenth
file is used for the .wrx generated by the
Progress AppBuilder for window procedures
that use OCX controls.

Description A fill-in for the description of the subtype part.
Directory A fill-in for the directory, relative to the

Workspace Module directory, where the part
file is stored. Leave this field blank if the part
is stored directly in the Workspace Module
directory.

Template Display only. Provided for backward
compatibility.

Parts

Suffix A fill-in for the suffix added to the end of the
part filename (prior to the extension). If left
blank, no suffix is added to the object’s name.

Roundtable Administration

 3-25

Tab Field Description
 Extension A fill-in for the extension of the part (for

example, "p" for a program). This optional
field is commonly used to enforce a naming
convention. For instance, a .p extension is used
for most Progress procedures created with the
Procedure Editor and a .w extension is used for
most procedures generated by AppBuilder.

Defaults

All These toggle-boxes correspond to the object
properties on the Config tab of the Object
Properties window. When new objects of the
subtype are created, the object’s properties will
default to the properties defined here For more
detailed information, see the "Config Folder
Description" section in Chapter 6.

Roundtable User's Guide

 3-26

3.10.2 Subtype Theory
In pre-version 9 Progress programming environments, multiple code parts are not commonly
used. Typically, you define Subtypes with only one part each. Possible subtype definitions
Include:

Subtype Program Part

Window Yes W

Program Yes P

Include No I

NOTE: It is not necessary to define a secondary subtype part to store WRX files as part of
your windows programs. Roundtable can automatically find and store WRX files as a
part of your PCODE object without requiring you to define a multi-part subtype. See
the "WRX Files." section in Chapter 6 for a more complete description of how this
works.

3.10.3 Subtype Example — Part I
Progress code (PCODE) objects are assigned a user-defined subtype that controls the naming,
management, creation, and storage of one to nine text files (parts) belonging to the object.
Consider the following simple subtype definition:

Subtype: Program

Program: Yes

Part # Description Suffix Ext.

1 Simple program p

This subtype describes programs that consist of a single text file with a “.p” extension.

3.10.4 Subtype Example — Part II
In the following example, a simple include file subtype is defined:

Subtype: Include

Program: No

Roundtable Administration

 3-27

Part # Description Suffix Ext.

1 Simple include i

3.10.5 Subtype Example — Part III
Multi-part objects require a bit more complex definition. In this example, an ADM2
SmartDataObject is defined:

Subtype: SDO

Program: Yes

Part # Description Suffix Ext.

1 Main program w

2 Field definitions include i

3 Client Proxy _cl w

Without the SDO subtype, the three files that comprise an SDO would have to be separate
objects, making them cumbersome to manage. By formalizing the relationship among these
text files, Roundtable can treat them as a single object.

Using Code Subtypes can help enforce coding standards and vastly reduce the number of
objects tracked in your system. They can also make training new programmers on your system
much easier because Roundtable reminds them of the requirements of each subtype.

Suffix naming is less flexible than extension naming because the length of the suffix may reduce
the length of the base name usable by the programmer. For example, a two-character suffix of "-
d" leaves only six characters available for the base name if you want to conform to the eight-
character DOS naming convention.

When you add a PCODE object, Roundtable tests the naming conventions based on these
fields. For example, if you designate ".p" as the extension for the program subtype part, you
cannot create a Program part with a suffix of ".u". Roundtable displays an error message until
you enter the correct suffix.

Code Subtypes should be created before you set up the workspace sources or add PCODE
objects to your Progress application. After creating the Code Subtypes, use them to create
PCODE objects. You can also edit and delete Subtypes (until assigned) and print the Code
Subtypes Report.

Roundtable User's Guide

 3-28

3.10.6 Adding a Subtype
First, follow these steps to enter the basic information for the subtype.

1. Choose Admin→Code Subtypes from the Tabletop menu. The Roundtable Code
Subtypes window appears.

You must be logged in as the sysop user to perform Code Subtype maintenance.

2. Choose the Add Record button ().

3. Enter the new alphanumeric subtype code. If your site number is not 0, you must enter the
three-digit site number as a prefix for the code. If your site number is 0, you cannot begin
your code with a number.

4. Fill in the information in the Subtype Info panel.

5. Choose the Save Record () button.

Next, enter the information required for subtype parts.

1. Choose the Add button.

2. In the Subtype Parts panel, edit the parts information for the subtype part.

3. Choose the Save Record () button.

4. Repeat these steps for each part required in the subtype.

Optionally, edit the Subtype Defaults as required. Choose File→Exit to close the window.

3.10.7 Editing a Subtype or Subtype Part
You can edit some of the fields of a subtype after it has been created.

Follow these steps to edit a subtype.

1. Choose Admin→Code Subtypes from the Tabletop menu. The Roundtable Code
Subtypes window appears.

You must be logged in as the sysop user to perform Code Subtype maintenance.

2. From the Subtype list, select the subtype you want to edit.

3. When you begin to make changes, the Save Record and Cancel Record buttons are
enabled.

4. Choose the Save Record () button to complete your changes.

Roundtable Administration

 3-29

5. Choose File→Exit to close the window.

3.10.8 Deleting a Subtype
Note that you cannot delete a subtype after it has been assigned to one or more objects. The
Assigned toggle box at the top of the Subtypes window indicates whether the subtype has been
assigned.

Follow these steps to delete a subtype:

1. Choose Admin→Code Subtypes from the Tabletop menu. The Roundtable Code
Subtypes window appears.

You must be logged in as the sysop user to perform Code Subtype maintenance.

2. From the Subtype list, select the subtype to delete.

3. Choose the Delete Record () button. A warning box appears.

4. Choose the Yes button to delete the subtype or the No button to cancel this operation.

5. Choose File→Exit to close the window.

3.10.9 Code Subtypes Report
The Code Subtypes Report provides a detailed review of each Code Subtype. The report
includes all the fields listed on the Roundtable Code Subtypes window.

Follow these steps to print a Code Subtypes report:

1. Choose Admin→Reports→Code Subtypes from the Tabletop menu. The Code Subtypes
Report window appears.

Roundtable User's Guide

 3-30

2. Select one or more Code Subtypes from the list. Use Control-Click to select multiple
items.

3. Choose the OK button to run the report.

4. The report appears in a text viewer window.

5. Close the text viewer window to close the report.

3.11 Site Information
You can use the Help→About dialog box to enter your Site Information (registered user name,
registration number, and the site number).

The following table describes the fields found in the Site Information dialog box:

Field Description

Registered User Optional.

Site Number: The Site Number value is used only when you have more than
one Roundtable repository and must move information from one
repository to another. Using multiple repositories is an advanced
feature of the Roundtable system. See the "Distributed
Development" section in Chapter 1.

Serial Number The serial number provided on your license agreement.

Control Number The control number provided on your license agreement.

Follow these steps to set the site information:

1. Choose Help→About form the Tabletop menu. The About Roundtable dialog box
appears.

Roundtable Administration

 3-31

2. Choose the Update Record button () to enable the Site Information fields.

3. Fill in the values, and then choose the Save Record () button.

3.12 Security
Roundtable provides a complete security framework to allocate responsibility for activities to
different users of the system. A user may have different security access privileges in each
workspace. Roundtable security is managed through the following windows:

• User Maintenance Window

• Group Access Window

• Workspace Users Window (for access assignments)

When you first install Roundtable, security is not active. Activate security by adding
Roundtable users in the User Maintenance window. After adding the users, you can add group
access records. Each group access record consists of a group access code you provide and a
list of system activities. Use the Workspace Group Assignments window to associate one or
more users with one or more group access records within a specified workspace.

NOTE: Users registered in Roundtable are recorded in the _user file of the Roundtable
database. These users are not recorded in your application databases by Roundtable.
When connecting to your application databases, Roundtable passes your Roundtable
user ID and password as part of the database connection process. You can set up your
database connection parameters to pass alternate values using the -U and -P connect
options. For more information about database connection parameters, see the
"PDBASE Objects” section in Chapter 6.

3.12.1 User Maintenance Window Description
Maintain users in the User Maintenance window:

Roundtable User's Guide

 3-32

This window allows you to add or delete users, and edit user names. The sysop user is a
special user found in every Roundtable system. A user with the ID “sysop” is special user. The
sysop user has unlimited access to all system functions and exclusive access to many
important system functions. The sysop user must be created first.

3.12.2 Adding a User
Follow these steps to add a user.

1. Choose Admin→Security→Users from the Tabletop menu.

You must be logged in as the sysop user to perform Code Subtype maintenance.

If this is the first time you have accessed this function, you must first create the sysop user
account. Even though you must have logged in as sysop to access user maintenance, the
actual sysop user account must be created to implement security.

Choose the Add Record () button.

2. Fill in the appropriate data for the new user.

3. Choose the Save Record () button.

4. Choose File→Exit to close the window.

3.12.3 Editing a User
Follow these steps to edit a user.

1. Choose Admin→Security→Users from the Tabletop menu.

You must be logged in as the sysop user to perform Code Subtype maintenance.

Roundtable Administration

 3-33

2. Edit the user Name.

NOTE: A user must change his/her own password (the "Changing You Password" section
in this chapter). To reset a user password, the user account must be deleted and then re-
added.

3. Choose the Save Record () button.

4. Choose File→Exit to close the window.

3.12.4 Deleting a User
Follow these steps to delete a user.

1. Choose Admin→Security→Users from the Tabletop menu.

You must be logged in as the sysop user to perform Code Subtype maintenance.

2. Choose the Delete Record () button. A warning box appears.

3. Choose the Yes button to delete the user or the No button to cancel this operation.

4. Choose File→Exit to close the window.

Roundtable User's Guide

 3-34

3.12.5 Changing Your Password
You can only change your password if users have been defined in Roundtable. Follow these
steps to change your password:

1. From the Tabletop menu, choose Admin→Security→Change User Password. The
following dialog box appears:

2. Your password does not show when you type it. You must type your old password and

your new password in both the Password and Confirm Password fields to confirm that you
did typed it correctly.

3. Choose the Save Record button () to save your change.

3.12.6 Group Access Window Description
Use this window to define a group access record that you will later assign to one or more users
in specified workspaces. Each group access record contains a group access code that you
provide and a list of allowable system activities.

Use the following window to maintain security groups:

The browse contains a single column displaying each of the currently defined group access

Roundtable Administration

 3-35

codes. When you select a group access code, the data to the right of the selection list indicates
the security privileges defined for that code. The following table describes the meaning of
each toggle box:

Field Description

PCODE Objects Users are allowed to work on PCODE Objects.

PDBASE Objects Users are allowed to work on PDBASE Objects.

PFILE Objects Users are allowed to work on PFILE Objects.

PFIELD Objects Users are allowed to work on PFIELD Objects.

DOC Objects Users are allowed to work on DOC Objects.

Create Orphans Users are allowed to create orphan versions.

Workspace Module Users are allowed to modify Workspace Module parameters.

Object Level &
Group

Users are allowed to edit object group and level.

Task Create Users are allowed to create new Tasks.

Task Complete Users are allowed to complete Tasks.

Import Users are allowed to perform the Workspace Import process.

Releases Users are allowed to manage Workspace Releases.

Update Schema Users are allowed to perform the schema update process.

Deployments Users are allowed to manage Workspace Deployments.

Change Finder Users are allowed access to Group Checkout and the Change
Finder.

3.12.7 Adding a Group Access Code
1. Choose Admin→Security→Groups from the Tabletop menu. The Group Access window

appears.

You must be logged in as the sysop user to perform Group Access Code maintenance.

Roundtable User's Guide

 3-36

2. Choose the Add Record () button. The following dialog box appears:

3. Enter a code for the group access record and choose the OK button.

4. To edit allowed activities, see “Editing a Group Access Code” in this chapter.

5. Choose File→Exit to close the window.

3.12.8 Editing a Group Access Code
1. Choose Admin→Security→Groups from the Tabletop menu. The Group Access window

appears.

You must be logged in as the sysop user to perform Group Access Code maintenance.

2. Select the Group Access Code that you want to edit from the list on the left side of the
window.

3. Click the toggle boxes to indicate which activities users with that group access code can
perform.

4. Choose the Save Record () button.

5. Choose File→Exit to close the window.

3.12.9 Deleting a Group Access Code
1. Choose Admin→Security→Groups from the Tabletop menu. The Group Access window

appears.

You must be logged in as the sysop user to perform Group Access Code maintenance.

2. The Group Access window appears.

3. Select the Group Access Code that you want to edit from the list on the left side of the
window.

4. Choose the Delete Record () button. A warning box appears.

5. Choose the Yes button to delete the subtype or the No button to cancel this operation.

6. Choose File→Exit to close the window.

Roundtable Administration

 3-37

3.12.10 Workspace Security Window Description
Use the Workspace Security window to associate one or more users with one or more access
groups for a specific workspace. In short, the user access assignments are done with this
window. In the following window, the users harry, joe, and nancy have the access privileges
defined by the access group Manager. The user patty has the cumulative access privileges
granted by the access groups DBAdmin and Manager.

Use the following window to maintain workspace security:

The first column contains a comma-delimited list of users, and the second column contains a
comma-delimited list of group access codes.

Do not include the sysop user in your assignments because the sysop user always has full
access privileges.

3.12.11 Adding Workspace User Access Assignments
Follow these steps to add a new workspace user access assignment:

1. Choose Admin→Security→Workspace User/Group Assignment from the Tabletop menu.
The Workspace User/Group Assignment window appears.

You must be logged in as the sysop user to perform Workspace Users maintenance.

2. Choose the Add Record () button. The Add User Assignments dialog box appears.

Roundtable User's Guide

 3-38

3. Select a user from the users selection list, and then choose the Add button to move the

user into the user-list selection list.

4. Choose the OK button. In the Workspace User/Group Assignments window, a row
containing the newly defined user list appears in the browse.

5. Choose the Group List button. The Add Group Assignments dialog box appears.

6. Select the group access code to add from the groups selection list. Choose the Add button

to move the selected group into the group-list selection list.

7. Choose the OK button. In the Workspace User/Group Assignments window, the current
row containing the workspace user assignment is updated with the new group list.

8. Choose File→Exit to close the window.

3.12.12 Editing Workspace User Access Assignments
Follow these steps to edit a new workspace user access assignment:

Roundtable Administration

 3-39

1. Choose Admin→Security→Workspace User/Group Assignment from the Tabletop menu.
The Workspace User/Group Assignment window appears.

You must be logged in as the sysop user to perform Workspace Users maintenance.

2. Select the workspace user access assignment to edit from the browse.

3. To edit the user list, choose the User List button. The Add User Assignments dialog box
appears.

4. Select a user in the users selection list, and then choose the Add button to move the user

into the user-list selection list.
OR
Select a user in the user-list selection list, and then choose the Remove button to remove
the user from the user list.

5. Choose the OK button. In the Workspace User/Group Assignments window, the current
row containing the workspace user assignment is updated with the new user list.

6. To edit the Group list, choose the Group List button. The Add Group Assignments dialog
box appears.

Roundtable User's Guide

 3-40

7. Select the group to add to the group list from the groups selection list, and then choose the
Add button to move the group into the group-list selection list.
OR
Select the group to remove from the group-list selection list, and then choose the Remove
button.

8. Choose the OK button. In the Workspace User/Group Assignments window, the current
row containing the workspace user assignment is updated with the new group list.

9. Choose File→Exit to close the window.

3.12.13 Deleting a Workspace User Access Assignment
Follow these steps to delete a workspace user access assignment.

1. Choose Admin→Security→Workspace User/Group Assignment from the Tabletop menu.
The Workspace User/Group Assignment window appears.

You must be logged in as the sysop user to perform Workspace Users maintenance.

2. Select the workspace user access assignment to delete in the selection list.

3. Choose the Delete Record () button. A warning box appears.

4. Choose the Yes button to delete the subtype or the No button to cancel this operation.

5. Choose File→Exit to close the window.

3.12.14 Viewing Current Privileges
If you are logged into the system as anyone other than the sysop user you may view your
access privileges for the currently selected workspace by following these steps:

Roundtable Administration

 3-41

1. Choose Admin→Security→View User Privileges. The User Privileges dialog box
appears.

2. Choose the Close (⌧) button to close the dialog box.

3.13 Repository Dump and Load
Do not use the PROGRESS database administration utilities to dump and load a Roundtable
repository database. The Roundtable repository database stores many RECID values and if
you use the PROGRESS database administration utilities to dump and load your Roundtable
repository database, the RECID values will be lost. Also, your new Roundtable repository
database will be unusable.

Roundtable comes with its own tools for dumping and loading the repository database. These
tools preserve the RECID values.

Follow these steps to dump and reload the Roundtable repository database:

1. Ensure that adequate disk space is available to accommodate a database dump. It is
difficult to predict how much space this should be, but dumps often require between half
to three quarters the size of the original database.

2. From the PROGRESS editor of a Roundtable session, run rtb_dmp1.p to dump the
Roundtable repository data to ASCII “.d” files in the current directory. This program is
located in the rtb_util subdirectory of the Roundtable installation procedure and makes
calls to a second program in that directory, rtb_dmp2.p, expecting the same relative path
(that is, RUN rtb_util/rtb_dmp2.p).

3. Use the PROGRESS data dictionary tools to dump the user table of contents.

4. Use the PROGRESS data dictionary tools to dump the Roundtable repository database
schema to an ASCII “.df” file in the current directory.

5. If the new Roundtable repository database will be in a different location, change to that
new location and move in or copy in the ASCII “.d” and “.df” files created earlier.

Roundtable User's Guide

 3-42

6. Use the PROGRESS prodb command to create a new Roundtable repository database from
the PROGRESS empty database.

7. From the PROGRESS editor of a PROGRESS session on the new Roundtable repository
database, use the PROGRESS data dictionary tools to load the schema from the ASCII “.df”
file in the current directory.

8. From the PROGRESS editor of a PROGRESS session on the new Roundtable repository
database, use the PROGRESS data dictionary tools to load the user table of contents.

9. From the PROGRESS editor of a PROGRESS session on the new Roundtable repository
database, run rtb_lod1.p to load the Roundtable repository data from the ASCII “.d” files
in the current directory. Like rtb_dmp1.p, this program is located in the rtb_util
subdirectory of the Roundtable installation and makes calls to a second program in that
directory, rtb_lod2.p, expecting the same relative path (that is, RUN rtb_util/rtb_dmp2.p).

3.14 Defining Your Application
There are a number of steps required to set up Roundtable. The following list provides you
with an outline of these steps. At each step, you should review the manual for detailed
instructions and descriptions.

1. Create Module Definitions. See the "Adding a Workspace Module Definition" section in
this chapter.

2. Create a Product. See the "Adding a Product" section in this chapter.

3. Create Product Modules. See the "Adding a Product Module" section in this chapter.

4. Create Subtypes. See the "Adding a Subtype" section in this chapter.

5. Create a Workspace. See the "Adding a Workspace" section in Chapter 4.

6. Associate Products with the Workspace. See the "Adding a Workspace Source" section in
Chapter 4.

7. Back up your Roundtable database (rtb.db). Do this so that you can easily change your
mind about the previous configuration steps, and then re-run the steps that follow.

8. Create a Task for loading schema. See the "Adding a Task" section in Chapter 5.

9. Create a PDBASE object. See the "Adding a PDBASE Object" section in Chapter 5.

10. Load the application database schema. See the "Load Schema" section in Chapter 5.

11. Complete the Task. See the "Completing a Task" section in Chapter 4.

12. Create a Task for loading application source files.

13. Register objects using Module Load. See the "Module Load" section in Chapter 7.

Roundtable Administration

 3-43

14. Complete the Task.

15. Create a Release. See the "Adding a Release" section in Chapter 4.

3.15 Loading Multiple Workspaces
If you have a chain of existing workspaces, you might want to capture the status of each of the
workspaces in Roundtable. Refer to the following diagram, which describes a typical
development environment:

Devel Test Pre-Prod
Production

Remote
 Sites

Different versions of the application source and schema exist in each of these workspaces.
Assume you want to capture the different object versions that exist in each workspace. To do
this, you define and load the contents of the Pre-Prod, Test, and Devel workspaces into
Roundtable.

3.15.1 Pre-Prod
You start by loading the Pre-Prod workspace first because it contains the earliest version of
the system. Assuming that you have already defined your Subtypes, products, and Product
Modules, follow these steps. See the "Defining Your Application" section in this chapter.

1. Create a workspace named Pre-Prod.

2. From Workspace Sources, add the Pre-Prod workspace as the primary workspace source
to itself for each product and Product Module.

3. Create a new task for loading your Pre-Prod schema.

4. For each of the databases in your Pre-Prod workspace, create a new PDBASE object and
run Load Schema.

5. Complete your task.

6. Create a new task for loading your workspace source.

7. Run Module Load for each of the modules in your Pre-Prod workspace.

Roundtable User's Guide

 3-44

8. Complete your task. If any of the programs in your task fail to compile, flip their compile
flags to ‘No’.

9. Create a release in the Pre-Prod workspace. This is Pre-Prod release 1.

3.15.2 Test
Follow these steps to create a Test workspace in Roundtable and populate it:

1. Create a workspace named Test. Specify R-code = ‘No’ and S-Code = ‘No’.

2. Use Workspace Sources to specify Pre-Prod as a workspace source for Test and then
include all products and Product Modules available in the Pre-Prod workspace.

3. Use the Import process to copy object definitions from Pre-Prod to Test. Note that you
are only copying the definitions of the objects. You specified S-Code = ‘No’ for the
workspace, so no source will be copied into the Test workspace directory. This is
necessary so that you do not overwrite the source that is already in the Test workspace.

4. Edit the workspace definitions so that R-code = ‘Yes’ and S-code = ‘Yes’.

5. Create a task for loading new and modified schema definitions.

6. For each of the databases in your Test workspace, run the Load Schema process. This will
find any new and modified schema, and bring your Roundtable schema object definitions
in sync with your physical Test workspace schema.

7. Complete your task.

8. Create a task for loading new and modified source.

9. Run the Global Change Finder to find all source files in the Test workspace that are
different from those you loaded into the repository for the Pre-Prod workspace. The
Global Change Finder works by comparing the source in the file system with the source
registered in the Roundtable repository. The Global Change Finder allows you to create
new object versions for each of the different source files found.

10. Run Module Load for each of the modules in the Test workspace. This will find any new
programs in the Test workspace that do not exist in the Pre-Prod workspace.

11. Complete your task. If any of the programs in your task fail to compile, flip their compile
flags to ‘No’.

12. Create a release in the Test workspace. This is Test release 1.

3.15.3 Devel
Follow the same steps as outlined in the Test workspace, except that you copy object
definitions from the Test workspace into the Devel workspace.

Roundtable Administration

 3-45

3.15.4 Setting Up the Workspace Flow
Now that you have the Devel, Test, and Pre-Prod workspaces registered into Roundtable’s
repository, you can specify the normal flow of system changes. This is done from Workspace
Sources.

1. Add the Test workspace as a source to the Pre-Prod workspace. Include all products and
Product Modules.

2. Delete any records specifying Pre-Prod as a primary source.

3. Add the Devel workspace as a source to the Test workspace. Include all products and
Product Modules.
It is not necessary to remove Pre-Prod as a source workspace to the Test workspace. It
might be useful to have it as a source for Test if you want to have a quick way of moving
patches made in Pre-Prod back into Test.

4. For each product and Product Module, add the Devel workspace as the primary source to
itself.
It is not necessary to remove Test as a source workspace to the Devel workspace. It might
be useful to have it as a source for Devel if you want to have a quick way of moving
revisions made in Test back into Devel.

 4
Workspaces

4.1 Introduction
Roundtable provides a secure development and testing environment by managing
configurations of your software applications in Workspaces. A Workspace is a copy of your
application program and related databases, the content of which is known and managed by
Roundtable. Roundtable manages the creation, deletion, and modification of objects (code,
databases, tables, fields, and text) within the Workspace.

This introduction to Workspaces presents detailed information about utilizing Workspaces in
your development environment. Specifically, this chapter discusses:

• Workspace Maintenance

• Workspace Sources

• Object Variants

• Database Schema Updates

• Releases

• Imports

• Workspace Populate Process

• Build Names Table

• Deployments

• Procedure Updates and Compiles on Remote Sites

• Database Schema Updates on Remote Sites

4.2 Workspace Maintenance
As part of your software development process, Roundtable keeps copies of objects in isolated

Roundtable User's Guide

 4-2

areas called Workspaces. You can have multiple Workspaces for a single development
project, with each Workspace representing a different stage of development. Changes made
within a Workspace do not affect other Workspaces. Typically, you create Workspaces that
parallel the different development stages of your product, such as development, testing, and
deployment.

When creating the first Workspace for a project, you develop the objects and databases from
scratch. After that, you can create Workspaces by importing objects from other Workspaces.
Roundtable compares the objects in the target and source Workspaces, and then imports the
objects with differences into the target Workspace.

To help you understand how to use Workspaces, the following scenario describes four
common Workspaces for one base product. Each description includes how to create the
Workspace, what the Workspace includes, and what type of quality assurance testing is best
for that Workspace. Remember, this is only one scenario; tailor Workspaces to your products
and development cycle, as described in the "Introduction" section in Chapter 1.

• Development Workspace: Use the development Workspace to create, modify, and
delete new objects and data. Since this Workspace is volatile, it is only suitable for
limited, informal testing, usually done by programmers.

• Test Workspace: Create the application in the Test Workspace by importing objects and
data from the Development Workspace. Although this Workspace changes less frequently
than the Development Workspace, some changes are necessary to complete the testing
process. This Workspace is stable enough for significant quality assurance Alpha testing.

• Pre-production Workspace: After testing, objects and data are imported from the Test
Workspace into the Pre-production Workspace. Since this Workspace should function
with few or no major problems, you can release it to sophisticated users for Beta testing
and evaluation. Typically, you should require approval to make changes in this
Workspace.

• Production Workspace: Import objects and data from the Pre-production Workspace
into the Production Workspace. This Workspace is a "live" system that must function
flawlessly under real-world conditions. You should typically require approval to make
changes in this Workspace.

4.2.1 Guidelines for Workspace Planning
Roundtable can manage many Workspaces. For example, quality assurance, testing, and
development should be done in different Workspaces. Multiple Workspaces can aid in the
quality assurance strategy, but more is not necessarily better. Consider the timing impact of
each additional Workspace when planning your overall development and quality assurance
strategy. Use the following guidelines:

• Organize your work into logical categories, such as research and development, product
development, custom development, or maintenance.

Workspaces

 4-3

• Use a consistent naming convention. For example, always use the abbreviation DEV
when referring to development Workspaces, such as BASEDEV, CUST1DEV,
CUST2DEV, etc.

• Do not create more Workspaces than you have resources to manage. In most
circumstances, separate Test and Deployment Workspaces, along with the necessary
development Workspaces, are sufficient to complete your product.

4.2.2 Workspace Window Description
Roundtable Workspaces are defined in the Workspaces window:

The following fields can be found in the Workspace Window:

Field Description

Workspace ID A fill-in for the Workspace name.

Partner Site
Workspace

A toggle-box indicating that the Workspace is a receipt
Workspace for a Partner Site.

Description A fill-in for the Workspace description, up to 40 characters.

Xref Level A fill-in for the cross-reference level. Enter one of the
following five, depending on the amount of info needed:
1-No Cross-reference
No integrity checking is possible. (Not a good idea for

Roundtable User's Guide

 4-4

Field Description
Development Workspaces.) No cross-reference navigation
except for field-to-file relationships. Roundtable recommends
a full compile of the Workspace to ensure the integrity of the
application.
2-Partial Cross-reference
Roundtable only creates cross-references for PFILE and
PCODE objects.
3-Robust 1
Roundtable creates cross-references for PFILE, PCODE, and
PFIELD objects only.
4-Robust 2
Roundtable creates cross-references for PFILE, PCODE, and
Informal objects only. (Informal objects include Shared
Variables, Frames, Workfiles, etc.)
5-Full Xref
 Full cross-reference.
6-No Schema
Xref everything except for schema objects. This allows you
to more easily manage an application in Roundtable when
you do not want to or are not able to have Roundtable
directly manage the schema. For example, if your application
uses dataservers then you can use this Xref level so that
Roundtable will only manage your application source code.
Roundtable cannot manage schema for dataservers.

R code A toggle box that determines whether Roundtable keeps
compiled R-code in the Workspace. It has no effect on
deployments made from this Workspace. Activate this box to
keep R-code in the Workspace.

S code A toggle box that determines whether Roundtable keeps
source code in the Workspace. It has no effect on
deployments made from this Workspace. Activate the toggle
box to keep source code in the Workspace. If you change the
S-code value, you can use the Workspace populate option to
move code into or out of the Workspace directories.

Locked By A field that indicates the current lock status of the
Workspace. A Workspace is locked when schema updates
and other major Workspace management activities are
performed.

Workspace Path A fill-in for the Workspace root path, the path where the

Workspaces

 4-5

Field Description
Workspace information and components are stored. The first
Workspace path should always be the root directory to your
Workspace. No two Workspaces should share the same root
directory. Roundtable uses the specified path to locate your
source code.

Compile Parameters Compile statement parameters for objects compiled in the
Workspace. Normally, this field can be left blank. It is most
often used for compiling modules with support for multiple
languages. Module compile parameters or individual PCODE
object compile parameters can override Workspace compile
parameters.

4.2.3 Adding a Workspace
Follow these steps to create a new Workspace:

1. Choose Workspace→Workspaces Maintenance from the Tabletop menu. The
Workspaces window appears.

You must be logged in as the sysop user to perform Workspace maintenance.

2. Choose the Add Record () button.

3. Fill-in the appropriate information for the new Workspace.

Make sure the New Workspace ID describes the product and its stage of development.
Try to name your Workspaces consistently. For example, if you have one base product
and two custom products, name your Development Workspaces something like
BASEDEV, CUST1DEV, and CUST2DEV.

The Workspace ID can be up to 16 characters long. If your site number is not 0, then you
must enter the three-digit number as a prefix for the Workspace name. If your site number
is 0, you cannot begin your code with a numeric character. By default, your site number is
zero. Only partner sites are normally assigned a site number.

4. Choose the Add button in the Workspace Paths panel. The Add Workspace Path dialog
box appears.

Roundtable User's Guide

 4-6

5. Enter the path required by your Workspace.

The Workspace path tells Roundtable where to store the Workspace and its components.
The first Workspace path should always be the root directory to your Workspace. No two
Workspaces should share the same root directory. Roundtable uses the other specified
paths to locate your source code.

NOTE: The UNIX-style forward slash (/) is used in Roundtable instead of the backward
slash (\) used in Windows. This is because the forward slash is portable in the
PROGRESS environment, while the backward slash is not. You can use network drive
mapping letters (eg: “W:/directory”), and you can also use Universal Naming
Conventions (eg: “//computer/share/directory”).

6. Choose the OK button.

7. Repeat steps 4-6 for each path required for the Workspace.

8. Choose the Save Record () button.

9. Choose File→Exit to close the window.

4.2.4 Editing a Workspace
You can change the description, Xref Level, R-code, or S-code fields for a Workspace at any
time; however, you cannot change the Workspace ID.

NOTE: Changing the Xref Level, R-code, or S-code after you have assigned and compiled an
object has no immediate effect on objects in the Workspace. You must recompile for
the Xref Level and R-code to take effect.

Follow these steps to edit a Workspace:

1. Choose Workspace→Workspaces Maintenance from the Tabletop menu. The
Workspaces window appears.

You must be logged in as the sysop user to perform Workspace maintenance.

2. Select the Workspace to edit from the Workspace browse.

3. Edit the Description, Xref Level, R-code, and S-code fields for the Workspace and
modify the Workspace Paths as necessary.

NOTE: Changing the Workspace root directory in this screen will not cause the contents of
the physical directories to move. You are responsible for moving or renaming
directory structures to match the specifications present in this window.

4. Choose the Save Record () button.

5. Choose File→Exit to close the window.

Workspaces

 4-7

4.2.5 Deleting a Workspace
You can delete a Workspace if you have sufficient security access and no one else is currently
working in the Workspace. Note that deleting a Workspace does not delete any completed
objects from the repository. A Workspace is simply a list of object versions that defines a
configuration of your software application and a related set of application components in the
directories specified in the Workspace paths. However, once you delete the Workspace, the
configuration is lost and cannot be reclaimed. Although tasks done under the Workspace are
not deleted, they may be far less available for casual review if the Workspace to which they
belong is deleted. In addition, all release, deployment, and general histories of the Workspace
are deleted.

NOTE: Deleting a Workspace removes all source code at the operating system level. Work-
in-process code may be deleted and will not be recoverable.

Follow these steps to delete a Workspace.

1. Choose Workspace→Workspaces Maintenance from the Tabletop menu. The
Workspaces window appears.

You must be logged in as the sysop user to perform Workspace maintenance.

2. From the Workspaces browse, select the Workspace to delete.

3. Choose the Delete Record () button. A confirmation dialog box appears with any
warnings to consider.

4. Choose the Continue button to complete your Workspace delete.

5. Choose File→Exit to close the window.

4.2.6 Hiding a Workspace
Marking a workspace as hidden removes it from the workspace list on the Tabletop in GUI
and the Workspace Selection screen in TTY.

Follow these steps to hide a Workspace:

1. Choose Workspace→Workspaces Maintenance from the Tabletop menu. The
Workspaces window appears.

You must be logged in as the sysop user to perform Workspace maintenance.

2. From the Workspaces browse, select the Workspace to hide.

3. Choose File→Hide Workspace from the Workspaces window menu. A warning dialog
box appears.

Roundtable User's Guide

 4-8

4. Choose the Yes button to hide the selected Workspace. The menu item appears with a
check mark to indicate that the Workspace is hidden.

5. Choose File→Exit to close the window.

4.2.7 Archiving a Workspace
Marking a workspace as archived removes it from the workspace list (hidden workspace) and
removes all source from the Workspace directory. Since the workspace is archived and not
deleted, all Xref information is retained in the repository.

Follow these steps to archive a Workspace:

1. Choose Workspace→Workspaces Maintenance from the Tabletop menu. The
Workspaces window appears.

You must be logged in as the sysop user to perform Workspace maintenance.

2. From the Workspaces browse, select the Workspace to archive.

3. Choose File→Archive Workspace from the Workspaces window menu. A warning dialog
box appears.

4. Choose the Yes button to archive the selected Workspace. The menu item appears with a
check mark to indicate that the Workspace is archived.

5. Choose File→Exit to close the window.

4.2.8 Viewing Workspace Event History
Use the Event History window to view all events that have occurred in a Workspace.

Workspaces

 4-9

The following fields can be found in the Event History Window:

Field Description

Event Number Event numbers for object that are checked out are
always 99,999,999. When the object is checked in
the final event number is assigned.

Date The date on which the final event number is assigned.
This is the date that the action was taken on the
completed (checked in) object.

Action The action code describes what action was taken on
the object in the Workspace. Action codes include:
Add – New object version was added.
Delete – Object assignment was deleted.
Assign – Object assignment was created.

Pmodule The product module the affected object belongs to.

Module The Workspace module the affected object appears
in.

Object The name of the object affected by the action.

Type The type of object: PCODE, DOC, PDBASE,
PFILE, PFIELD.

Roundtable User's Guide

 4-10

Field Description

Group The object group code assigned to the object
assignment at the time of the action.

Level The object level code assigned to the object
assignment at the time of the action.

Version The version of the object affected by the action.

Task# The task number associated with the object version
affected by the action.

Subtype The subtype of the object affected by the action.

User ID User that produced the event.

4.3 Workspace Reports
Roundtable offers a number of reports about your Workspaces. The following table describes
the Workspace reports:

Report Definition Benefit

Changes Report A list of the changes in a
Workspace across a range of
events.

Provides testers and/or
customers with extensive
information about what has
changed in a Workspace
between any two events.

Event History
Report

The history of a Workspace
between two events, sorted
from newest to oldest event.

Traces the history of individual
objects or groups of objects
belonging to a product module.

Release Report A detailed list of the changes in
a Workspace between two
releases.

Useful for testers and/or
customers when receiving new
releases. Use the Object Details
and Show Update History fields
for this purpose.

Workspaces

 4-11

Report Definition Benefit

Unapplied
Changes Report

A list of all schema changes
that have been entered but not
updated.

Verifies the status of the schema
in the Workspace.

Workspace
Report

A complete list of the objects
in a Workspace ordered by
Workspace module.

Provides a hard copy of the
current Workspace
configuration.

Workspace
Differences
Report

A list of the differences
between the two Workspace
configuration lists.

Useful when integrating a base
release to custom Workspaces.

4.3.1 Printing Reports
Follow these steps to print a Workspace report.

1. Choose Reports→Workspace from the Tabletop menu.

2. From the Reports→Workspace submenu, choose the report you want to print. Roundtable
displays a report options window for many of the reports. These options are explained in
the following sections.

3. If a report options window appears, choose the report options you require, then choose
the OK button. The Print Destination dialog box appears.

4. The report appears in a text viewer window.

5. When finished viewing and/or printing the report, close the text viewer window.

4.3.2 Changes Report
The Workspaces Changes Report shows changes in a Workspace between to events
(inclusive). The following window allows you to specify the information to include in the
Report:

Roundtable User's Guide

 4-12

Field Description

Workspace The Workspace to report on.

From Event# Fill in the first event number to include in the report.

To Event# Fill in the last event number to include in the report.

Show Only Latest Version Toggle on to print only the latest changes to an
object made between the two event numbers.

Show Object Details Toggle on to print the object description.

Show Version Notes Toggle on to print the programmer's notes.

4.3.3 Workspace Event History Report
The Workspace Event History Report shows events that match the criteria that you specify in
the following window:

Workspaces

 4-13

Field Description

Workspace The Workspace to report on.

User Fill-in a specific user or leave blank for all users. A lookup
button is provided to find a user by ID or name.

Date Range Specify the From and To dates to include in the report.

Event Range Fill in the beginning and ending event numbers to include in the
report.

Pmodule Fill in the product module number. Use an asterisk (*) to denote
any product module number.

Object Type Select the type of object (PCODE, PFILE, PDBASE, etc.). Use
the asterisk (*) to denote any object type.

Object Fill in the name of the object (menu.p, cust.p, etc.). Use an
asterisk (*) to denote any object.

Roundtable User's Guide

 4-14

4.3.4 Workspace Report
The Workspace Report shows information about a workspace and, optionally, objects
assigned to the Workspace. The following window allows you to specify the information to
include in the Report:

Field Description

Workspace The Workspace to report on.

Show Objects Toggle on to print the objects in the Workspace or
off to print configuration information only.

Show Object Details Toggle on to print the object description.

Show Version Notes Toggle on to print the notes the programmer entered
when changing the objects.

4.3.5 Workspace Differences Report
The Workspace Differences Report shows the differences between the contents of any two
Workspaces. The Workspace Difference Report window appears as follows:

Workspaces

 4-15

The following fields can be found in the Workspace Differences Report dialog box:

Field Description

Workspace 1 Select the first Workspace to compare from the
drop-down list.

Workspace 2 Select the second Workspace to compare from the
drop-down list.

4.4 Workspace Sources
After you create a Workspace, you define its contents by assigning product modules to it. This
assignment of product modules is the configuration hierarchy of the software system managed
in the Workspace.

After you assign product modules to the Workspace configuration, you can create new objects
in the Workspace, each of which belongs to one of the product modules. When you are
loading objects into the system for the first time, you can use the Module Load utility to create
many new objects quickly. For a detailed description of this utility, see the "Module Load"
section in Chapter 7.

You can also assign existing objects from the Roundtable repository to the new Workspace.
This assignment is done one object at a time or by using the Roundtable import process.

The import process examines a source Workspace to determine what objects need to be
assigned to or deleted from a target Workspace to make the Workspaces' configurations,
where these configurations coincide, as similar as possible. The following simplified
explanation of the import process shows why Workspace sources are necessary and useful:

1. The import process compares the configuration hierarchy of each Workspace. When the
source Workspace contains a product module that is also contained in the target
Workspace, it does an object-by-object comparison within that product module to see if
objects in the target Workspace have the same object versions as objects in the source
Workspace. If they are different, the import process places a reference to the object
version found in the source Workspace in the import control table with an action code of
Assign.

2. If a product module in the source Workspace contains objects that do not exist in the
corresponding product module in the target Workspace, references to these new objects
are placed in the import control table with an action code of Assign.

3. If an object has been deleted from the source Workspace, but still appears in the target
Workspace, a reference to the deleted object is placed in the import control table with an

Roundtable User's Guide

 4-16

action code of Delete. With your permission, the import process can remove the object
from the target Workspace.

4. If you accept the suggestions supplied by the import process, it assigns the specified
object versions from the Roundtable repository to the target Workspace. It is important to
remember that these object versions are being extracted out of the repository, not simply
copied from the source Workspace(s) to the target Workspace. One reason for this is that
the import process considers only the latest completed objects in the source
Workspace(s). If the import process copied from the source Workspace(s) to the target
Workspace, it might copy a work-in-process version of the object.

The import process is actually more sophisticated than the example implies. For more detail
on the import process, see the "Imports" section in this chapter.

When assigning product modules to Workspaces, it is necessary to specify a source
Workspace. When there is no source Workspace, such as when you assign Workspace
modules to your first Workspace, specify the name of the current Workspace as the source
Workspace. Roundtable automatically marks each product module assigned in this way as
PRIMARY to the current Workspace. This is a way of saying that the current Workspace is
the headwater of the flow of objects for the specified product module.

Refer to the following example:

Workspace
Devel1

Devel2

Testing

Videostore

Source
Devel1

Devel2

Devel1

Devel2

Testing

Videostore

Product
Acct

Ops

Acct

Ops

Acct

Ops

Video

Pmodule
A/P
A/R
G/L
Invent
Orders
A/P
A/R
G/L
Invent
Orders
A/P
A/R
G/L
Invent
Orders
Video

Devel1

Video
store

Devel2

Testing

Workspaces

The first two columns contain the names of each Workspace and its Workspace sources. The
Devel1 and Devel2 Workspaces are primary Workspaces because their Workspaces are
identical to their sources. The third and fourth columns list the products and the product
modules (within those products) that are assigned to the Workspace.

Workspaces

 4-17

The Testing Workspace has Devel1 and Devel2 designated as its Workspace sources. Unless
specifically excluded, Roundtable imports all objects belonging to the products and product
modules assigned to Devel1 and Devel2 into the Testing Workspace.

The Videostore defines Testing as its source Workspace. Note that another product, Video,
has been added to the Videostore Workspace. Therefore, objects in this Workspace are both
created and imported. The import process imports all objects in the Testing Workspace unless
otherwise specified or blocked by object variants belonging to the Video product. For more
information on object variants, see the "Object Variants" section in this chapter.

4.4.1 Workspace Sources Window Description
After you create a Workspace, you define its contents by assigning product modules to it.
Assign product modules using the Workspace Sources window.

Field or

Menu Item
Description

Status (for Product) Contains one of the following values:
PRI — Source Workspace is the current Workspace.
 INC — Product will be included in imports.
EXC — Product will be excluded from imports.

Source Workspace Contains the name of a source Workspace

Roundtable User's Guide

 4-18

Field or

Menu Item
Description

Product Contains the Product-ID belonging to the source Workspace.

Source Workspace Workspace ID for the Workspace Source.

Add Source Add a Workspace Source.

Delete Source Delete a Workspace Source.

Include Source Toggle the status from EXC to INC. This button has no effect on PRI
status.

Exclude Source Toggle the status from EXC to INC. This button has no effect on PRI
status.

Status (for Product
Module)

Contains one of the following values:
PRI — Source for Product Module is the current Workspace.
NEW — Newly assigned. User must change to INC or EXC.
INC — Product Module will be included in imports.
EXC — Product Module will be excluded from imports.

Pmodule Contains the Product Module code.

Description Contains the description of Product Module.

Include Product
Module

Toggle the status of the currently selected product module from EXC
to INC. This button has no effect on PRI status.

Exclude Product
Module

Toggle the status of the currently selected product module from INC
to EXC. This button has no effect on PRI status.

4.4.2 Adding a Workspace Source
Follow these steps to add a Workspace source.

1. On the Tabletop, select the Workspace for which you want to configure Workspace
sources.

2. Choose Workspaces→Workspaces Sources. The Workspace Sources window appears.

You must be logged in as the sysop user to maintain Workspace Sources.

Workspaces

 4-19

3. Choose the Add Record () button.

4. In the Source Workspace drop-down list, select the source Workspace.

5. In the Product drop-down list, select the source product.

6. Choose the Save Record () button. Roundtable adds the source Workspace/Product.
Each product module that belongs to the specified source is inserted into the Product
Modules for Source Workspace table with a status of INC (or PRI if the current and
source Workspace are the same).

7. If you want to exclude a Product Module, select the appropriate Product Module, and the
either double-click the entry, or choose File→Exclude Product Module from the window
menu. The Product Module status changes to EXC. Repeat this step as necessary.

8. Choose File→Exit to close the window.

4.4.3 Deleting a Workspace Source
Follow these steps to delete a Workspace source.

1. On the Tabletop, select the Workspace for which you want to configure Workspace
sources.

2. Choose Workspaces→Workspaces Sources. The Workspace Sources window appears.

You must be logged in as the sysop user to maintain Workspace Sources.

3. From the Workspace Sources browse, select the Workspace/Product source to delete.

4. Choose the Delete button () to delete the Workspace source.

NOTE: Roundtable deletes Workspace/Product source and all entries in the Product Modules
table for the source. It does not remove the objects from the Workspace. The Import
process removes objects from the Workspace that have no current Workspace source.

5. Choose File→Exclude to close the window.

4.5 Editing Workspace Module Parameters
R-code, S-code and Xref Level values may be set for each Workspace module independently.
These Workspace module values override the Workspace level specifications for these values
you have entered in the Workspaces window. See the "Workspace Window Description"
section in this chapter for a detailed description of the R-code, S-code, Xref level, and
Compile Parameters fields.

Roundtable User's Guide

 4-20

NOTE: Changing the Xref level, R-code, or S-code after you have assigned and compiled an
object has no effect on the object. You must recompile for the new Xref and R-code
to take effect.

Follow these steps to edit Workspace module values:

1. On the Tabletop, select the Workspace for which you want to configure Workspace
Modules.

2. Choose Workspaces→Workspace Modules. The Workspace Modules window appears.

You must be logged in as the sysop user to maintain Workspace Modules.

3. Select the Workspace module to edit in the browse table.

4. Enter the module’s Xref level. Set the Xref column to 0 to default to the Workspace’s
Xref level, or set it to another number to override the Workspace’s Xref level.
Enter Yes or No in the Rcode column to specify whether .r code is stored in the module,
or set this field to ? (question mark) to default to the Workspace’s R-code value.
Enter Yes or No in the Scode column to specify whether source code is stored in the
module, or set this field to ? (question mark) to default to the Workspace’s S-code value.
In the Comp Params column, enter any compile syntax parameters to be used when
compiling objects in this Workspace module. Normally, this column can be left blank. It
is most often used for compiling modules with support for multiple languages. If you
enter compile parameters for a module, then the Workspace compile parameters are
ignored. Leave column field blank to default to the Workspace’s compile parameters.

You can check the syntax of the compile parameters by choosing the Check Params
button.

5. Choose the Save button () to complete your edit.

6. Choose File→Exit to close the window.

4.6 Object Variants
Roundtable allows you to create more than one variation of the same object called variants.
Variants have the same name and type but belong to different product modules. For example,
you may need three variations of an install program, one each for UNIX, DOS, and Windows.
Each of these is a variant. You use variants when you need support for:

• Custom system development

• Vertical markets

Workspaces

 4-21

• Different hardware platforms

See the "Creating an Object Variant" section in Chapter 5 for instructions on creating an
object variant.

4.6.1 Object Repository
Roundtable keeps objects in the Roundtable repository. The repository stores all of the objects
in the system and their definitions. The unique key for the object definition includes the
following fields:

• Object type (PDBASE, PFILE, PFIELD, PCODE, or DOC)

• Product module (Pmodule) code (base_ap, cust_ap)

• Object name (menu.p, cust.p, etc.)

• Version code (01.00.00, 01.01.00, etc.)

The object definition allows an object of the same type, name, and version to exist in two
different product modules, creating an object variant. Although Roundtable stores all object
variants in the repository and objects can exist in more than one product module, only one
variation of an object can be assigned to any given Workspace. Each Workspace represents a
collection of object versions. Roundtable manages a table of these object versions called the
configuration list. The following fields define the unique key for objects in this table:

• Workspace ID (Wspace-id)

• Object type (PDBASE, PFILE, PFIELD, PCODE, or DOC)

• Object name

4.6.2 Versions vs. Variants
The difference between versions and object variants can be confusing at first. Consider the
table below:

Object Type Product Module Object Name Version

PCODE core_ap menu.p 01.00.00

PCODE core_ap menu.p 01.01.00

PCODE cust1_ap menu.p 01.00.00

All of the objects in this table are stored together in the object repository. The first two show
two versions of an object named menu.p. Remember that the unique key on objects stored in
the repository includes the object type, product module, object name and version code. The

Roundtable User's Guide

 4-22

last object is an object variant that belongs to a product module named cust1_ap. You must
always remember to consider the product module when looking at an object version.

4.6.3 Example of Object Variations
This example shows how you can use object variants. Assume you are creating an invoice-
printing program for many different types of businesses. Most of these businesses can use your
core (or generic) program, but the Videostore application needs a special variation. To handle
this, you need to create two variations of the same program.

You begin by creating the core program, invprnt.p, in the development Workspace (refer to
line 1, below). Then, import the core program into the Testing Workspace (line 2). After
testing, import the program into two Workspaces, a core pre-production Workspace (line 3)
and a Videostore Workspace (line 4). In the Videostore Workspace, you can create a custom
variant of invprnt.p using the video_ap product module. You now have two variations of the
same program (lines 3 and 4).

Object Type Workspace Product Module Object Name Version

1 PCODE Devel core_ap invprnt.p 01.00.00

2 PCODE Testing core_ap invprnt.p 01.00.00

3 PCODE Preprod core_ap invprnt.p 01.00.00

4 PCODE Video video_ap invprnt.p 01.00.00

4.7 Database Schema Updates
Relational database schemas are defined by PDBASE, PFILE, and PFIELD objects in the
Roundtable repository - the schema objects assigned to a Workspace are called the logical
schema. The Progress databases managed by a Workspace also contain schema definitions -
these are called the physical schema. When you modify the logical schema objects,
Roundtable does not immediately update the physical schema. This allows you to make
extensive changes to the database schema definitions while others continue to use the
databases managed by the Workspace. You run the update schema process to post changes to
the Progress schema when it is convenient for all users of the Workspace.

A complete on-line history is kept of every change made to the logical schema. This allows the
update schema process to determine which changes must be made in the physical schema due
to changes in the logical schema. Because the system tracks both the committed and edited
state of the logical schema it is not necessary to check in schema objects after each update
schema process. Instead you can edit the logical schema and update these changes to the

Workspaces

 4-23

physical schema many times before completing the schema objects.

Roundtable provides data preservation capabilities for schema operations that would normally
delete data from the database. For instance, Roundtable allows you to specify a change of data
type for a field. The only way to post a change of this nature to the physical schema is to
delete the fields and then add it back with a new data type. Using Roundtable, you specify a
data transformation routine to convert the old data to the new data type. The data
transformation will occur as part of the update schema process. See the "Data Procedures"
section in this chapter.

Follow these steps to update the schema objects:

1. Build the Schema Update List. See the "Building the Schema Update List" section in this
chapter.

2. Set the Deactivate Indexes flag where necessary. See the "Toggle Index" section in this
chapter.

3. Create and Edit Data Procedures. See the "Data Procedures" section in this chapter.

4. Update Physical Schema. See the "Updating Physical Schema" section in this chapter.

5. Delete the Schema Update List. See the "Deleting the Schema Update List" section in this
chapter.

4.7.1 Database Integrity Check Report
If changes are made to a physical database schema outside of Roundtable, difficulties may
arise. Check that the physical database schema matches the definition managed by Roundtable
by performing the Database Integrity Check Report. You do not need to run this report often.
However, if you have any reason to believe that someone may have made changes to a
database managed in a Roundtable Workspace directly, then you should run this report. The
report lists all differences between what Roundtable believes the physical schema should be
and what it actually is.

Follow these steps to run the Database Integrity Check Report:

1. Select the PDBASE object associated with the database you want to check in the object
browse in the Tabletop.

2. Choose Reports→Object→Database Integrity Check Report. The Database Integrity
Check Report appears.

3. Verify that the Workspace and PDBASE object values are correct, and then choose the
OK button.

4. Choose Reports→Integrity Check Report.

5. The report appears in a text viewer window.

Roundtable User's Guide

 4-24

6. When finished viewing and/or printing the report, close the text viewer window

4.7.2 What to Do when the Physical Schema Is Out of
Synchronization
If you find that the physical schema of a database is no longer synchronized with the
Roundtable you should resolve the differences as quickly as possible. This can be done in one
of two ways.

If the changes in the physical schema are ones you want to keep, then run Load Schema. See
the "Load Schema" section in Chapter 7. This process will load the physical schema
differences into Roundtable, and bring Roundtable’s schema object definitions in sync with
your physical Workspace database schema.

If the changes in the physical schema are not correct or will conflict with changes already
made in the logical schema but not yet updated to the physical schema, then edit the physical
schema using the Progress Data Dictionary to remove the differences. Ensure that you have
removed all of the differences by running the Integrity Check Report again.

4.7.3 Schema Update Window Description
The Schema Update window is used to manage the schema update process.

Workspaces

 4-25

The following table describes the columns in the Schema Update List:

Column Description

Table or Sequence The table name or sequence name in the Progress
dictionary.

Type Indicates if entry is a Table or a Sequence

Status BldErr: Error while building Schema Update List

Ready: Ready to be updated

Intermediate Status (Not normally seen by user):
 DelIdx: Delete index
 ModFld: Modify field
 NewIdx: New index
 ModFil: Modify table
 FixDat: Fix data

Compl: Update is complete

Action New: Table or sequence is new Update: Table or
sequence has been modified Delete: Table or sequence
has been deleted
Replace: Table definition has been replaced by a table
definition from a different product module

Flags D: Deleted fields
I: Unique index
T: Datatype changes
E: Extent changes

Processing No-action
Purge only
Dump only
Load only
Transform

Index Indexes are toggled as Active or Inactive.

4.7.4 Unapplied Changes Report
The Unapplied Changes Report lists each schema object in the Workspace that has changed
since the last Update Schema process. It is a good idea to run this report before updating the
schema as a documentation tool and confirm that the changes about to be made to the Progress
database are correct.

Roundtable User's Guide

 4-26

Follow these steps to print the report:

1. Choose Reports→Workspace→Unapplied Changes Report from the Tabletop menu. The
Unapplied Changes Report window appears.

2. Select the report options, and then choose the OK button.

4.7.5 Building the Schema Update List
The first step in updating the physical schema is to build the schema update list. The Build
function locates all logical schema objects that have changed since the last time that the
schema was updated and creates the schema update list.

Because a PFIELD can be assigned to several PFILE objects, a change to a single PFIELD
object might affect the update of multiple tables.

After Roundtable generates the list of database tables and sequences that must be updated, it
checks schema integrity. The integrity check looks for missing information such as a missing
dump-name or primary index. It also checks for missing objects and other problems that
would cause the table definition update to fail.

NOTE: To see which schema objects need to be updated before building the Schema Update
List, print the Unapplied Changes Report. For more information on this report, see
the "Unapplied Changes Report" section in this chapter.

NOTE: Sometimes tables are shown in the schema update list that do not actually need
updating. These extra tables are sometimes included because Roundtable cannot
resolve all cross-references to changes in the PFILE and PFIELD objects related to
the table. Including these tables will not cause any problems in the schema update
process.

Follow these steps to build the schema update list:

1. Choose Workspaces→Update Schema. The Schema Update window appears.

2. Choose the Build button. The Schema Update Working Directory dialog box appears.

3. Accept the default directory schupd unless large amounts of data are being preserved and

it is necessary to specify a different schema update directory to store temporary data.
Enter a different directory path if necessary.

4. Choose the OK button to generate the schema update list.

Workspaces

 4-27

5. If any tables have been dropped, replaced, or newly added, then the following dialog box
appears:

This dialog box warns you about the potential for data loss in your target database. If this
dialog box appears, be especially careful that you review the schema update table to see
which tables will be dropped. If any of the tables being dropped or dropped and re-added
contain data that you will need later, then be sure that their data has been saved or that
you are using some update processing to preserve their data. See the "Data Procedures"
section in this chapter for a description of Roundtable’s data preservation hooks.

Roundtable User's Guide

 4-28

4.7.6 Database Storage Areas
You can choose to assign new tables or indexes to existing storage areas in the physical
database by selecting the Storage Areas folder. This folder is only active when a new table or
index has been created.

Follow these steps to assign the target storage area for new tables and indices:

1. Select the Storage Areas tab. The storage areas folder appears.

2. Select the appropriate database in the DB drop-down list. New tables and indices for the
selected database appear in the browse.

3. Select the target storage area in the Area drop-down list.

4. Select one or more objects in the browse that you want to store in that area.

5. Choose the Assign button to assign the select area to the selected objects.

6. Repeat these steps as required.

4.7.7 Toggle Index to Activate/Deactivate
You can choose to deactivate the indexes on a table during the update schema process. This is
necessary when making changes to the table that will result in non-unique index entries. The
Index column shows the current status for a table.

Follow these steps to toggle indices:

1. Select the table in the schema update list.

2. If the Index is “Active” then choose the Toggle Index button.
OR
If the Index is “Inactive” then choose the Toggle Index button.

3. The Index status is changed in the schema update list.

NOTE: You must manually re-index those tables for which the indexes have been deactivated
after the schema update process. Use Progress utilities to re-index the database tables
affected.

Workspaces

 4-29

4.7.8 Skipping a List Item
You can skip the update of one or all of the items on your schema update list. This is useful if
the database schema has already been updated in some other manner. When skipping a table,
the status of the list item becomes Compl. Once skipped, the changes are assumed to have
been made in the physical schema by some other means than the schema update process.
Skipped tables and sequences will not show up on a subsequent build.

After skipping the update of one or more tables, choose the Update Schema button for final
processing to occur.

Follow these steps to skip the update of a table in the schema update list:

1. Select the table to skip in the schema update list.

2. Choose the Skip button. The Skip Table Update Option dialog box appears.

3. Select the skip option. Choose Skip Only Current Object to skip the highlighted item or

choose Skip All Objects in List.

4. Choose the OK button. The status of a skipped object is changed to Compl.

Remember to choose the Update Schema button even if all tables and sequences are skipped.

4.7.9 Data Procedures
The update schema process can perform three functions on each table it updates:

• Run Before Schema Update Data Procedure

• Update Physical Schema

• Run After Schema Update Data Procedure

The first and third processes are optional and performed only if specified for the table. These
procedures are used to preserve data across data type or extent changes, to a field definition,
or when unique indexes are changed.

Roundtable User's Guide

 4-30

For example, if modifying the extent of a field, the Before Schema Update Data Procedure is
used to dump the data from the field and the record ID of each record in the table being
updated. This is necessary because Progress forces the deletion of the field when an extent
change is performed during the Update Physical Schema step. The After Schema Update Data
Procedure is used to read the dump file and import the dumped data back into the table.

Roundtable generates templates for the Before and After Schema Update Data Procedures for
each table based on the following options:

• No-action: No procedures are generated

• Purge only: A purge procedure is generated

• Load only: Only an after update process procedure is generated

• Dump only: Only a before update process procedure is generated

• Transform: Both before and after update processes are generated

Editing the generated procedures must be done to include logic for data transformations. For
example, if the data type of a field is changing from Character to Integer, the After Schema
Update procedure must provide an algorithm that converts the character values (imported from
the dump file) to integer values to assign to the field.

When modifying a unique index, you can use the Before and After Schema Update Data
Procedures to ensure that unique records exist in the database after the update. The Before
Schema Update Data Procedure can save the record ID of each record in the table. During the
schema update the index can be deactivated. Then the After Schema Update Data Procedure
can find the records that the Before Schema Update Data Procedure saved and delete or
modify those records to meet the requirements of the modified index. You need to manually
re-activate the index using the Progress utility after the schema update is complete.

4.7.10 Creating Data Procedures
Follow these steps to create and edit data procedures:

1. Select the table in the schema update list.

2. Choose the Processing tab. The Processing folder appears.

Workspaces

 4-31

3. Choose the Processing option appropriate for the table.

4. Choose the Edit Before Process button to edit the procedure generated to handle the
Purge Only, Dump Only, or Transform option. A procedure window appears with the
procedure in it.
OR
Choose the Edit After Process button to edit the procedure generated to handle the Load
Only or Transform options. A procedure window appears with the procedure in it.

5. Edit the procedure and then close the procedure window.

4.7.11 Updating Physical Schema
Follow these steps to update the physical schemas of the application databases managed in the
Workspace:

1. Choose the Update button.

2. A warning dialog appears. Choose the Yes button to continue with the update. A status
window appears while the updates are applied.

3. After the update completes, each updated table has a status of Compl.

4.7.12 Deleting the Schema Update List
After updating the schema, delete the schema update list. Roundtable will not allow using any
of the schema objects as long as the list exists.

Follow these steps to delete the schema update list:

1. Choose the Delete button. A warning dialog box asks you to confirm list deletion.

2. Choose the Yes button. Another warning dialog box asks you to confirm deletion of the
update process programs (dump and load programs).

3. Choose the Yes button to delete the data procedures, or choose the No button if you want
to preserve them.

Roundtable User's Guide

 4-32

4. Choose File→Exit to close the Schema Update window.

4.8 Releases
A Workspace is a collection of object versions that define a configuration of the application.
Roundtable tracks each change as an event and assigns a sequential event number to it. These
events are collectively known as the event history of the Workspace. The actions that create
events include:

• The assignment of an existing object version to the Workspace. This is commonly done
by the Workspace import process. The Workspace import process quickly moves many
object versions from a source Workspace into a target Workspace according to
Workspace update rules. Object versions can also be individually assigned to the
Workspace.

• The deletion of an object version from the Workspace configuration. This is commonly
done by the Workspace import process, but can also be done individually.

• The check-in of an object. This results in a new object version in the Workspace.

A release is a record of a specific event number in a Workspace. It can be used to re-create the
exact contents of the Workspace configuration that existed as of that event.

Each release record has a sequential release number that uniquely identifies it in the
Workspace. Release records also contain a text label that describes the configuration of the
system at the time the release record was created. For example, release number 23 from the
Test Workspace might have a descriptive label like "Beta Release 2.1a".

Release records are used by the Workspace import process to control what can be pulled from
a Workspace. See the "Imports" section in this chapter.

Release records are used to control the content of deployments created by the system. See the
"Deployments" section in this chapter.

4.8.1 Releases Window Description
The Release Window contains a list of each release that has been created in the current
Workspace. A release is a label identifying the state of the Workspace as of the latest event
count.

Workspaces

 4-33

The following fields can be found in the Releases Window:

Field or Button Description

Release# The release number is generated automatically.

Event# The latest Workspace event number when release was added.

Date The date the release record was created.

User The user who created the release.

Note A user specified description of the currently selected release.

4.8.2 Adding a Release
Before adding a release, ensure that all schema objects in the Workspace have a status of
complete. Other types of objects may remain work-in-process.

Checked out objects have a work-in-process status and the special event number 99,999,999.
When the object is checked in, a real event number for the new object version is assigned to
the event record.

When you create a release record in a Workspace that has work-in-process object versions, the
configuration represented by the release includes the last completed object version of each
work-in-process object. Work-in-process objects are never included in a configuration
identified by a release record.

Follow these steps to add a release:

1. Choose Workspaces→Releases from the Tabletop. The Releases window appears.

2. Choose the Add Record () button. A new release is inserted into the browse.

Roundtable User's Guide

 4-34

3. Enter a note in the Note column. Use this note field to describe the current configuration
of the application in the Workspace (for example, 4.0a).

4. Choose the Save Record () button.

5. Choose File→Exit to close the window.

4.8.3 Editing a Release
Once a release is created, only the Note field can be changed.

Follow these steps to edit a release:

1. Choose Workspaces→Releases. The Releases window appears.

2. Select the release.

3. Change the text in the Note column as necessary.

4. Choose the Save Record () button.

5. Choose File→Exit to close the window.

4.8.4 Deleting a Release
Roundtable only allows the deletion of a release record if it is not referenced by a completed
deployment and if it is the last release created for the Workspace.

Follow these steps to delete a release.

1. Choose Workspaces→Releases. The Releases window appears.

2. Select the release.

3. Choose the Delete Record () button. A warning dialog box appears.

4. Choose the Yes button.

5. Choose File→Exit to close the window.

4.8.5 Release Report
The Release Report provides a detailed list of the changes that have occurred in a Workspace
between any two releases. Roundtable allows a comparison between specified releases.

Follow these steps to print the report:

1. Select a Workspace on the Tabletop.

Workspaces

 4-35

2. Choose Reports→Workspace→Releases from the Tabletop menu. The Release Report
window appears.

3. Enter the report options.

The following table describes the fields in the Release Report Submission dialog box:

Field Description

From Release Type the release number to report from, or type 0 to report on all
releases.

To Release Type the release number to report to, or type 0 to include the current
Workspace contents.

Page Headers Use this toggle box to print a report header at the top of each page.

Object Type
Headers

Use this toggle box to show an object type header at the beginning of
each object type.

Release
Information

Use this toggle box to show release information at the top of the
report.

Task Summary
Information

Use this toggle box to show summary task information at the top of
the report.

Roundtable User's Guide

 4-36

Field Description

Task Detailed
Information

Use this toggle box to show detailed task information at the top of
the report.

Show Only Latest
Version

Use this toggle box to show only the latest version of each modified
object.

Version
Information

Use this toggle box to show the object version information (version
and product module).

Details Use this toggle box to show a detailed description of the latest object
version.

Release
Information

Use this toggle box to show the release number that the object
version was first included in.

Task Information Use this toggle box to show the task number that the object version
was created in.

Version Note Use this toggle box to show the version note for each object.

4.9 Imports
To synchronize the currently selected Workspace configuration with the configurations of one
or more source Workspaces, use the import process. This process is the primary means of
managing the flow of object versions among Workspaces. See the "Introduction" section in
Chapter 1 for an overview of how these Workspaces allow the management of various
development cycles.

The import process reads the latest release configurations of one or more source Workspaces
and compares the object versions found in those source Workspace configurations with the
current configuration of the currently selected (target) Workspace. Where the object versions
in the source Workspaces differ from those in the target Workspace, the object versions are
added to an import control list with an appropriate action code.

Optionally, objects can be filtered by Task Number or by Workspace/Release across all or
selected Workspaces when building the import control list.

You then review the import control list and manually exclude or include items as necessary.
Usually it is not necessary to do more than a quick review of this import control list. The new
Sort feature allows users to sort objects listed by Status, Object, Product Module, Module,
Object Group, or Task Number. The list can be sorted by clicking on the column titles.

Workspaces

 4-37

After reviewing the import control list, you launch the import process. The import process
assigns objects from the repository to the target Workspace to bring the configuration of the
target Workspace into agreement with the list of object versions included in the import control
list. This import process might also remove objects from the Workspace if necessary.

Follow these steps to perform an import:

1. Build the import control table. See the "Building the Import Control Table" section in this
chapter.

2. Edit the contents of the import control list, if necessary. See the "Toggling the Import
Status" section in this chapter.

3. Perform the import processing to assign or delete objects in the target Workspace. See the
"Import" section in this chapter.

4. Delete the import control list. See the "Deleting the Import Control Table" section in this
chapter.

5. Perform the update schema process if any schema object versions have changed. See the
"Database Schema Updates" section in this chapter.

6. Perform a selective compile on the Workspace. See the "Selective Compiles" section in
Chapter 7.

4.9.1 Building the Import Control Table
Setup the source Workspaces prior to building the Import Control Table. See the "Workspace
Sources" section in this chapter.

Once the Import Control Table is built, Roundtable locks the Workspace and will not allow
others to work in the Workspace. If other users are working in the Workspace when
Roundtable tries to lock it, the build process stops. Once the import process is complete and
the Import Control Table is deleted, Roundtable removes the lock. This Workspace lock is not
a Progress record lock and survives system shutdown and restart.

Follow these steps to build the contents of the import control table:

1. Choose Workspace→Import. The Roundtable Import window appears.

Roundtable User's Guide

 4-38

2. (Optional - Recommended for advanced users only). To use filtering when building the

import control list, select the Filter tab. The Filter folder appears. Select the type of Filter
(Workspace/Release or Task), then select the desired items from the list(s) presented.

3. By default the Higher Versions Only toggle box is checked. This means that if the
version of an object in the source Workspace(s) is lower (earlier) than the version already
assigned to the target Workspace, it will not appear in the import control list. If you wish
to consider earlier version for import, uncheck the toggle box.

4. Choose the Build button. A warning dialog asks if you want to build the list based upon
you selection(s). Choose the Yes button to build the list.

Workspaces

 4-39

5. You can sort the import control by clicking on the column headings.

4.9.2 Import Analysis Report
The Import Analysis Report lists all of the import objects found during the build process along
with information on each object currently in the Workspace.

Follow this step to print the report:

1. Choose Reports→Import Analysis Report from the Import Control window's menu bar.

4.9.3 Toggling the Import Status
The status of the objects in the Import Control Table can be either INC (Include) or EXC
(Exclude). Only object versions with the INC status are processed during the import process.
Use the Toggle button to change the status of any object. If you wish to include all of the
objects, choose File→Include All. To exclude all the objects, choose File→Exclude All.

Follow these steps to selectively toggle an object's import status:

1. Select the object version in the import control list.

2. Choose the Toggle button. The status changes to either EXC or INC, depending on the
previous status.

3. Repeat Steps 1 and 2 for each object you want to change.

Roundtable User's Guide

 4-40

4.9.4 Compare Button
When you are not certain whether to include or exclude an object, you have the option of
visually comparing the version selected in the import list with the version currently assigned to
the Workspace using the Compare Button.

Clicking on the Compare Button opens the visual difference tool specified in User
Preferences.

4.9.5 Import
The import process assigns or deletes objects in the current Workspace that appear in the
import control list with a status of INC (Include). The assign process first removes any source
code belonging to an existing object version and then exports the source from the repository
for the new object version. As each object is successfully assigned, its Done field value is
changed to Yes.

If the import process is interrupted, it can be restarted. If uncertain of a PCODE object due to
an interruption, you can manually assign it to the Workspace. This forces the system to update
the source code in the Workspace from the Roundtable repository. See the "Assigning an
Object" section in Chapter 6 for more information.

After importing an object, Roundtable sets the object's update status in the Workspace to New.
This ensures the object is processed in the next update schema or selective compile process.

Follow these steps to import the contents of the import control table:

1. Choose the Import button. A warning dialog box appears.

2. Choose the Yes button. Roundtable assigns objects to the Workspace.

4.9.6 Deleting the Import Control Table
When Roundtable built the import control table, it placed a lock on the Workspace to prevent
others from working in the Workspace during the import process. To remove the lock, you
delete the import control table.

Follow these steps to delete the import control table:

1. Choose the Delete button. A warning dialog box appears.

2. Choose the Yes button to delete the import control table contents.

3. Choose File→Exit to close the Workspace Import window.

Workspaces

 4-41

4.10 Workspace Populate Process
Use the Workspace populate process to restore or remove source from a Workspace directory.
A Workspace is a configuration of object versions defined by the configuration list stored in
the repository. This makes it possible to restore the source of a Workspace by extracting the
appropriate object version's files from the repository.

There are two common situations where it is necessary to use the populate process. The first is
disaster recovery. For example, if a Workspace directory was deleted, the populate process
can be used to restore its contents. Only the latest completed version of each object is restored.
If work-in-process objects existed and had a status of Central, this work would be lost. In fact,
the populate process does not even try to restore work-in-process objects to ensure that they
are not overwritten in the populate process.

The second situation involves the use of the Workspace and Workspace module S-code flag.
This flag indicates whether source (and other object files as well) should be stored in the
Workspace. Set this flag to No, then run the populate process to remove source from the
Workspace. Set this flag to Yes, then run the populate process to restore source in the
Workspace.

A short cut can remove the source from a Workspace if no work-in-process objects exist.
Change the S-code flag to No, then delete the source manually. This is a quick way to free
disk space when a Workspace has not been used for some time and you want to keep the
configuration of the Workspace indefinitely.

Follow these steps to run the Workspace populate process:

1. Choose Workspace→Workspace Maintenance from the Tabletop menu bar. The
Workspace Maintenance window appears.

2. Choose File→Populate Workspace from the window’s menu.

3. Choose the module to populate from the drop-down list or choose the special value of
“All” to process all modules.

4.11 Build Names Table
This option rebuilds the physical names table for any Workspace in the repository. This utility
is rarely needed. Run this utility only when you believe that Roundtable has become confused
about the physical names of objects in a Workspace. When you run this utility, ensure that no
one is using the Workspace (s) in which the utility is run.

Optionally, you can process aliased objects during the Names Table build. The paths for
aliased object parts are specified when the object is created and are stored with the object.
Including aliased objects will set their paths according to the corresponding module and
subtype paths. Do not include aliased objects if you wish to preserve the paths that were

Roundtable User's Guide

 4-42

entered for them when they were created.

Follow this step to run the build names table utility:

1. Choose Admin→Build Names Table from the Tabletop menu. The Build Names Table
dialog appears.

2. (Optional) Check the Include Aliased Objects toggle box to process aliased objects.

3. Select Workspace and then choose OK.

4.12 Deployments
Deployments provide a mechanism for packaging software changes for delivery to remote
sites. It is not necessary for these remote sites to be running Roundtable to receive updates, but
some Roundtable utility procedures must be delivered with your update. Sites that have the
Roundtable system can be updated with information directly from the repository if desired.
Sites that receive updates packaged by Roundtable are called remote sites. Sites having the
Roundtable system and receiving repository information are called partner sites. Each site is
designated to be of one of the following types:

• R: Runtime License

• Q: Runtime Query License

• D: Development License

• S: Source License

• P: Partner License

Roundtable automatically encrypts source files based on the type of site and the content of the
Encrypt field in each object record. Roundtable automatically includes repository information

Workspaces

 4-43

in export format for partner sites.

To create an encrypted-source deployment, xcodproc.dll must be in your DOS PATH or
in DLC\BIN. The xcodproc.dll dynamic link library comes with Progress Software’s
Toolkit product, and it is normally installed into the DLC\BIN directory. If you do not have
the Toolkit from Progress Software, you will only be able to create deployments where the
deployment’s Type field (license type) is set to Source or Partner.

Each Workspace can own one or more remote sites. Each of these sites has one or more
sequential deployments. Each deployment, except for the first, is packaged as an incremental
update of just the changes made in the system since the previous deployment to the site.

Each deployment record is numbered sequentially by site. Each deployment contains a
Release number field into which the Workspace release number to be deployed is entered. A
release number defines a specific configuration of the Workspace. See the "Releases" section
in this chapter.

The content of a deployment is determined by comparing the release number of the current
deployment with the release number in the previous deployment. Given these two release
numbers, Roundtable can use the event history of the Workspace to find the changes that
occurred in the Workspace between the two releases. These changes are packaged as the
incremental update.

Roundtable creates incremental updates for both the source files and database schema content
of your application. Roundtable utilities for the update or creation of the application databases
and for the compilation of procedures are supplied in source form and can be customized and
delivered with your application.

Deployments can be made from any Workspace. Usually, you deploy from the last Workspace
in the quality assurance cycle. Follow these steps to deploy to a remote site:

1. Ensure the correct release is available.

2. Select or add a remote site.

3. Add a deployment for that remote site.

4. Build a schema control table list.

5. Create schema data procedures as required.

6. Make update directories.

7. Package and deliver the contents of the update directories to the remote site.

8. Install the deployment at the remote site.

9. Complete the deployment.

Roundtable User's Guide

 4-44

4.12.1 Roundtable Deployments Window Description
Remote sites receive packaged updates of the application system. Each site can receive
multiple sequential deployments. Each deployment is a software update consisting of the
incremental changes in the software system since the previous deployment to the site. Remote
sites and deployments are managed in the Roundtable Deployments window shown.

This window contains a browse table that listing remote sites and two tab folders.

The Site folder contains general information about the site selected in the browse table.

Field or Button Description

Site-code Deployment site identifier.

Status The status of a site can be active or inactive. The status is shown in
both the Site table and Site folder.

Type Type of deployment: Runtime, Development, Query, Source, or
Partner. The type of deployment determines the content of the
deployment, including whether or not the source is encrypted.

Site Notes User notes about the site.

Site Compile
Parameters

This editor contains one or more compile parameters that should be
added to the compile statements for procedures compiled at the
remote site.

Workspace and module compile parameters are ignored when
building a deployment. You cannot have module-by-module control

Workspaces

 4-45

Field or Button Description
of your site’s compile parameters.

If a PCODE object’s compile parameters are set to override the
Workspace compile parameters, then they also override the site
compile parameters. The site compile parameters are ignored.
Otherwise, the PCODE object’s compile parameters are used in
addition to the site compile parameters.

Check now button This button checks the contents of the Site Compile parameters editor
to ensure that the parameters are valid Progress compile statement
parameters.

4.12.2 Roundtable Deployments Window Deploy Folder
The Deploy folder contains information about each sequential deployment made to the remote
site.

Field or Button Description

Deploy# You make one or more sequential deployments to each site. Each of
these is identified by a sequential number starting at a value of 1 and
incrementing with each deployment by 1.

Status The Status of the deployment is either WIP (Work In Process) or
Complete.

Release# Each deployment is associated with a release number. Release

Roundtable User's Guide

 4-46

Field or Button Description
numbers identify a particular state of the Workspace. You can deploy
any release level.

Full Compile This toggle box controls whether a full compilation is performed at
the remote site when the deployment is received. If it is not selected
then only those routines that need to be compiled because of the
newly delivered system components are compiled.

Deployment Root
Directory

The root directory to build your deployment in.

Schema Update
Subdirectory

The name of the subdirectory that will contain the deployment’s
schema information. This subdirectory will reside under the
rtb_dbup subdirectory of your deployment root directory. The
name of this subdirectory is important as it represents your 4-digit
schema version number, or an 8-digit incremental schema update
number. See the "Schema Release Rules" section in this chapter for
details.

Schema button Choose the Schema button to generate the schema information for
the deployment.

Make button Choose the Make button to generate the deployment package.

Make WIP or
Complete button

Choose this button to toggle the status of the deployment between
Complete and WIP. A Complete deployment record cannot be
modified or deleted. Also, a new deployment record cannot be added
until the latest one has its status set to Complete.

4.12.3 Adding a Remote Site
Follow these steps to add a remote site:

1. Choose Workspace→Deployments. The Roundtable Deployments window appears.

2. Choose the Add Record () button.

3. Enter the new site code and select the license type.

Site codes must be unique throughout the system. The same site code cannot be defined
under two different Workspaces.

Workspaces

 4-47

Roundtable matches the license type against the Encrypt field in the PCODE object
definition to determine whether it should encrypt the PCODE objects being deployed.
The Encrypt field defaults to a value of "RQD", which means that if the license type is
Run-time, Query, or Development, Roundtable should encrypt the PCODE object.

4. Edit the fields in the site folder as necessary.

The Status is either A (Active) or I (Inactive).

5. Choose the Save Record () button.

6. Choose File→Exit to close the window.
OR
Choose the Deployments tab and create a deployment. See the "Adding a Deployment"
section in this chapter.

4.12.4 Editing a Remote Site
Once the remote site is created, the site notes and status of the site can be changed.

Follow these steps to edit a remote site:

1. Choose Workspace→Deployments from the Tabletop menu. The Roundtable
Deployments window appears.

2. Select the site to edit from the Site browse.

3. Choose the Site tab. The Site folder displays.

4. Edit the site folder.

5. Choose the Save Record () button to complete the edit.

6. Choose File→Exit to close the window.

4.12.5 Deleting a Remote Site
Once a remote site is no longer in use, it can be deleted.

Follow these steps to delete a remote site:

1. Choose Workspaces→Deployments from the Tabletop menu. The Roundtable
Deployments window appears.

2. Choose the site to delete from the Site browse.

3. Choose the Delete Record () button. A warning dialog box appears. Choose the Yes
button to delete the site.

Roundtable User's Guide

 4-48

4. Choose File→Exit to close the window.

4.12.6 Printing the Site Report
The Site Report gives site information, including the site notes and status, for each remote site.

Follow these steps to print the report:

1. Choose Reports→Workspace→Sites Report from the Tabletop menu. The Sites Report
window appears.

2. Specify the report selections, and then choose the OK button.

4.12.7 Adding a Deployment
Once a remote site is created and set up, the software can be deployed. See the "Adding a
Remote Site" section in this chapter. When creating a deployment, Roundtable determines
what the last update to the remote site was, then determines what needs to be deployed.

After adding a deployment, you can change both the release number and deployment
directory. See the "Editing a Release Number and Directory" section in this chapter.

Follow these steps to add a deployment:

1. Choose Workspace→Deployments. The Roundtable Deployments window appears.

2. Choose the Site to deploy from the Site browse.

3. Choose the Deployments tab. The Deployments folder opens.

4. Choose the Add Record () button.

5. To select the release used, choose the Release# field’s lookup () button. The Release
Lookup dialog box appears. Select the release number to use and choose the OK button.
The Release Lookup dialog box closes.

6. Choose the Save Record () button to save the deployment.

Workspaces

 4-49

7. Choose File→Exit to exit the window.
OR
Continue with other steps in the deployment process:
See the "Editing a Release Number and Directory" section in this chapter.
See the "Building a Schema Update List" section in this chapter.
See the "Making an Update Directory" section in this chapter.
See the "Updating a Remote Site" section in this chapter.
See the "Completing a Deployment" section in this chapter.

4.12.8 Editing a Release Number and Directory
After creating a deployment, you can change the release number or deployment directory. The
deployment directory is where Roundtable writes the update package for the deployment.

Follow these steps to edit the release number and directory.

1. Choose Workspace→Deployments from the Tabletop menu. The Roundtable
Deployments window appears.

2. Choose the site from the Site browse.

3. Choose the Deployments tab. The Deployments folder appears.

4. Select the deployment to change (only WIP deployments can be altered).

5. Choose the Release field’s lookup () button. The Release Lookup dialog box appears.

6. Select release, and then choose the OK button.

7. Change the directory, if necessary, in the Directory field.

8. Choose the Save Record () button to save the changes.

9. Choose File→Exit to exit the window.
OR
Continue with other steps in the deployment process:
See the "Building a Schema Update List" section in this chapter.
See the "Making an Update Directory" section in this chapter.
See the "Updating a Remote Site" section in this chapter.
See the "Completing a Deployment" section in this chapter.

4.12.9 Deleting a Work-in-process (WIP) Deployment
Once a deployment is created, it has a work-in-process (WIP) status. Change this status to
complete after confirming that the deployment is successful. Roundtable ensures that only
WIP deployments can be deleted.

Roundtable User's Guide

 4-50

Follow these steps to delete a WIP deployment.

1. Choose Workspace→Deployments from the Tabletop menu. The Roundtable
Deployments window appears.

2. Choose the site from the Site table.

3. Choose the Deployments tab. The Deployments folder opens.

4. Select the deployment to delete.

5. Choose the Delete Record () button. A warning dialog box appears. Choose the Yes
button to delete the deployment.

6. Choose the Done button to close the window.

4.12.10 Building a Schema Update List
A schema update list is similar to the one used when updating schema objects. To build the list
for regular schema updates, Roundtable examines all of the changes made to schema objects
in the system and determines their impact on the physical schema tables in the Progress Data
Dictionary. To build the schema update list for a deployment, Roundtable compares the
schema objects in the Workspace with the last version of the schema objects delivered to the
remote site. After Roundtable builds a list of tables changes to be delivered to the remote site,
it performs an integrity check on these tables. The integrity check ensures that all PFILE and
PDBASE relationships are valid.

Follow these steps to build the schema update list:

1. Choose Workspace→Deployments from the Tabletop menu. The Roundtable
Deployments window displays.

2. Choose the site from the Sites browse.

3. Choose the Deployments tab. The Deployments folder opens.

4. Choose the Schema button. The Update Schema window displays.

5. Choose the Build button to generate the schema update list.

6. If any tables have been dropped, replaced, or newly added, then the following dialog box
appears:

Workspaces

 4-51

This dialog box warns you about the potential for data loss in your target database. If this
dialog box appears, be especially careful that you review the schema update table to see
which tables will be dropped. If any of the tables being dropped or dropped and re-added
contain data that you will need later, then be sure that their data has been saved or that
you are using some update processing to preserve their data. See the "Data Procedures"
section in this chapter for a description of Roundtable’s data preservation hooks.

7. Close the Schema Update window.

8. Continue with other steps in the deployment process:
See the "Making an Update Directory" section in this chapter.
See the "Updating a Remote Site" section in this chapter.
See the "Completing a Deployment" section in this chapter.

4.12.11 Making an Update Directory
The make update process writes the contents of the deployment into a directory of your
choice. Install support tools are also placed in the directory automatically. These support tools
are discussed in the next section.

Follow these steps to create an update directory:

1. Choose Workspace→Deployments from the Tabletop menu. The Roundtable
Deployments window appears.

2. Choose the site from the Sites browse.

3. Choose the Deployments tab. The Deployments folder opens.

4. Choose a WIP deployment.

5. Choose the Make button to generate the deployment directory.

6. Choose the Done button to exit the window.
OR
Continue with other steps in the deployment process:

Roundtable User's Guide

 4-52

See the "Updating a Remote Site" section in this chapter.
See the "Completing a Deployment" section in this chapter.

4.12.12 Updating at a Remote Site
Roundtable provides a set of Progress-specific utilities necessary for installing the software at
a remote site. These utilities do not include a packaging utility to create install disks or utilities
to automate the installation from distribution media onto a computer. There are a variety of
Windows install utilities available that perform these functions very well.

The utilities provided by Roundtable perform:

• Schema update processing

• Selective and full compile processing

When Roundtable creates a deployment directory, it also creates three subdirectories to
support the install utilities. These are the rtb_inst, rtb_idat and rtb_dbup
directories:

Directory Directory Description

rtb_inst Contains the generic utility programs and data files for the
installation and compilation of the changes copied to the remote site.
This directory should remain on the remote site permanently to
support future incremental updates.

Files File Description

compctrl Text file contains a list of compilable procedures & compile options.

schupd.p Schema update procedure, part 1.

schupd2.p Schema update procedure, subroutine for part 1.

schupdp2.p Schema update procedure, part 2.

compobj.p Procedure for compiling a deployed Roundtable Object.

Directory Directory Description

rtb_idat Contains temporary files that can be deleted from the remote site
after the update installation is complete.

Files Name File Description

Workspaces

 4-53

Directory Directory Description

objctrl A list of new or modified objects delivered in the deployment. The
_update.w procedure posts these changes in the
rtb_inst\compctrl file.

delctrl A list of files to delete from a previously installed configuration of
the system. The _update.w procedure performs this task.

selcomp A list of selected objects to compile. The _update.w procedure
reads this list and marks corresponding objects in the
rtb_inst\compctrl file for compilation. Roundtable creates
this list of objects requiring compilation automatically.

objcopy.ful

and

objcopy.sel

The _update.w procedure allows you to designate an alternate
root directory for the R-code of compiled object to be placed. The
objcopy files contain a list of additional files or directories that
should be copied into the root directory. The objcopy.ful file is used
for full compiles, and the objcopy.sel file is used for selective
compiles. These files are created automatically for objects that have
their Objcopy attribute turned on.

rtb_dbup\dbver Contains the database schema update files required to update the
application databases at the site. During the update schema process,
the files in this directory are copied into rtb_idat where they are
processed. The dbver subdirectory name is usually generated by
Roundtable.

File Name File Description

schctrl Schema update control file. This file contains a list of each database
table to be updated in each database used by the application.

*.df Files for updating database schema.

*d.p Programs for pre-update file processing.

*f.p Programs for post-update file processing.

To provide install support for Roundtable deployments into your application, take a copy of
the _update.w procedure supplied within the top Roundtable source directory and modify it
to suit your needs. The _update.w procedure should become part of your application and
be located in the root directory of your application. This will ensure that the rtb_inst,
rtb_idat and rtb_dbup directories will be immediately below the directory where

Roundtable User's Guide

 4-54

_update.w is stored. Additionally, _update.w calls the DB Areas function that allows
you to assign new tables and indices, during the product installation, to existing storage areas
in the physical database.

The following files are created at the remote site by the installation control procedure or
manually by the user. These files are not automatically created by the installation support
procedures supplied by Roundtable.

File Description

Schema.pf A Progress parameters file contains the database connection parameters
used during the remote site schema update process. This file must
connect all of the databases to be updated at the remote site. See the
discussion of the _update.w procedure for more information on how
this parameter file is processed. The _update.w procedure has
support for creating and maintaining the schema.pf file.

Compile.pf A Progress parameters file contains the database connection parameters
to be used during the compile process. The _update.w procedure has
support for creating and maintaining the compile.pf file.

During execution of _update.w, various log and error files are created in a directory called
rtb_ilog. Normally, these files can be ignored.

The following log files are created in the rtb_ilog directory when the schema update
procedures are compiled:

File Description

schcomp.srt Created by _update.w during the OS-COMMAND when executing
schcomp.p. From this file you can determine if execution of
schcomp.p began.

Schcomp.log Created by schcomp.p. Contains the names of the schema update files
being compiled.

Schcomp.err Created by schcomp.p. Contains any compile errors that occur during
the compile of the schema update programs. This file is empty if no
compile errors occur.

Workspaces

 4-55

The following log files are created in the rtb_ilog directory during the pre-schema and
schema update:

File Description

Schupd.srt Created during the OS-COMMAND when executing schupd.p. From
this you can determine if schupd.p execution began.

Schupd.log Created by schupd.p. Contains information about what table is being
updated in the pre-schema and schema update.

Schupd.err Created by schupd.p. Contains any errors that occur during pre-schema
and schema update.

Schema.log Created by schupd.p. Contains detailed log information about the pre-
schema and schema update.

Roundtable User's Guide

 4-56

The following log files are created in the rtb_ilog directory during the post-schema
update:

File Description

Schupdp2.srt Created during the OS-COMMAND when executing schupdp2.p. From
this you can determine if schupdp2.p execution began.

Schupdp2.log Created by schupdp2.p. Contains information about what table is being
processed by the post-schema update.

Schupdp2.err Created by schupdp2.p. Contains any errors that occur during post-
schema update.

The following error file is created in the rtb_ilog directory when updating the compctrl
file:

File Description

objctrl.err Created by _update.w when updating the compctrl file. If any
errors occur during the creation of the comctrl file, they appear here.

4.12.13 The Update Process
Follow these steps to perform a sample update process:

1. Shut down databases if this is not a first time installation.

2. Back up the databases and application directories if this is not a first-time installation.

3. Copy the installation package into the application directories. This means that the
rtb_inst, rtb_idat, and rtb_dbup directories will exist in your application's root
directory. The use of a windows install utility is highly recommended.

4. Place an icon in the application's program group to launch _update.w. Ensure that the
working directory is your application root directory. The _update.w procedure is your
own copy of Roundtable’s _update.w procedure, which we supply with Roundtable to
manage the Roundtable compilation and installation process. You should modify
_update.w to reflect your own application’s installation requirements. At the very
least, you should change it so that it displays your own application’s name, rather than
“Roundtable”. For a more detailed discussion of the schema update process and the
options available to you, see the "Database Schema Updates on Remote Sites" section in
this chapter.

Workspaces

 4-57

5. After completing the remote site update process you should complete the deployment. See
the "Completing a Deployment" section in this chapter.

4.12.14 Completing a Deployment
Before you complete a deployment, it is good practice to confirm that the remote site
successfully received and installed that deployment. That way, if the remote site update did
not work properly, you can modify the Workspace and restart the deployment process. Once
the deployment is complete, the Status field toggles between WIP and Complete.

Follow these steps to complete a deployment:

1. Choose Workspace→Deployments from the Tabletop menu. The Roundtable
Deployments window appears.

2. Choose the Site in the Site browse.

3. Choose the Deployments tab. The Deployments folder opens.

4. Choose the Complete button.

5. Choose File→Exit to close the window.

A new deployment cannot be created until the last deployment has been completed.

4.13 Procedure Updates and Compiles on Remote Sites
Procedure updates and compiles are performed by the _update.w procedure. This
procedure performs maintenance on the rtb_inst/compctrl file. The compctrl file
contains a list of each application procedure that can be compiled by your application.
_update.w updates the compctrl file when a new update package is received by reading
the contents of the rtb_idat/objctrl file and inserting and deleting items from compctrl.

The _update.w procedure deletes unused application files by reading the list of files to be
deleted from the rtb_idat/delctrl file.

Use the R-code directory fill-in in the _update.w procedure to specify the destination root
directory of the R-code in the application. Make this field blank if your R-code will remain in
the same directory as the source. If an rtb_idat/objcopy file exists, items specified in it
are copied into the R-code destination as well. This is very useful if you have bitmaps and
other files that must be in your application R-code directory structure.

4.14 Database Schema Updates on Remote Sites
Remote site database schemas are updated by the _update.w procedure with calls to the
rtb_inst/schupd.p, rtb_inst/schupd2.p and rtb_inst/schupd2p.p

Roundtable User's Guide

 4-58

procedures. These procedures read information in a Progress database parameters file.
_update.w finds and connects to one or more databases that will be updated with the
schema update package delivered in the rtb_dbup directory.

If the databases specified in the schema.pf file are local to the client running _update.w,
the databases can be connected in single user mode for the update. This is the preferred
connection mode for schema update processing. If the databases do not yet exist but can be
created by the Progress client session with the DATABASE CREATE statement,
_update.w can create the databases for you. See your Progress documentation to determine
if your Progress client software can create a database. For example, it is not possible for a 16-
bit Progress NT client to create a 32-bit NT server database even if both the Progress NT
server and Progress NT client are installed and running on the same machine. In all cases, a
Progress client cannot create a database on a database server. If the Progress client can access
the platform providing database server services and the platform is also available as a file
server, it might be possible to connect in either a database server or single user mode.

If the databases have not yet been created and the Progress client cannot create them, you must
create the database manually from the empty.db supplied with the server platform's copy of
Progress before updating its schema from the client running _update.w.

A Progress client running _update.w can update the schema of a database connected by a
networking protocol. However, you must start the database servers before running the
_update.w procedure on the client machine. The schema.pf file should contain all of the
required connection information for the client.

The _update.w procedure uses the schema.pf file to manage the client connection to the
databases when these databases are located on database servers. The creation, startup and
shutdown of the database servers cannot be managed by the Progress client running the
_update.w procedure. Again, if you are installing in a client/server environment, you must
ensure that the database servers are available for connection by the Progress client running the
_update.w procedure.

Because it is important that the Progress client running _update.w have uncontested access
to database servers during a schema update, please ensure that the servers are started with a -n
1 argument to allow only a single client connection.

4.14.1 Schema Update Process
The schema update process is the most complex process performed during the update at the
remote site. It performs the following functions:

• Runs any Before Schema Update Procedures to dump selected data from the database that
would otherwise be destroyed by the schema change.

• Applies the schema updates contained in the *.df files delivered with the deployment.

Workspaces

 4-59

• Runs any After Schema Update Procedures to restore data into the database that was
dumped in the first stage of update processing.

The schema update process reads a control file, called schctrl, to manage the three-stage
update of each of the connected databases. As the operations specified in the schctrl file
are completed, the schctrl file is modified to record these completed steps. This allows
the update schema process to be restarted if it is interrupted.

The schctrl file is a simple text file with one line per database table to be updated. Each
line in the schctrl file contains the following fields in Progress export format:

• Control flags: Three characters representing the status of the three update stages. Each
character is either Y or N, indicating whether the operation has been completed. The
stages are Before Schema Update, Schema Update and After Schema Update.

• Database name: The name of the logical database in which the file being updated is
located.

• Tablename: The name of the table to update.

• Deactivate indexes?: The option for deactivating the indexes, either Yes or No.

• File reference number: A four-digit number used to identify the *.df, *d.p and *f.p files
to use during the schema update process. The *.df file contains the schema change
information, the *d.p procedures are those procedures run during the first stage, and the
*f.p procedures are those procedures run during the third stage of update processing.

Here is a sample line from a schctrl file:

"NNN" "sports" "customer" no 0001
File reference number

Deactivate indexes flag
Table name

Logical database name
Control Flags

Because the control flags for the sample line above are "NNN", each of the three processing
actions are taken on the file. This means that there will be two procedure files and a schema
update file for this table. These files will be named 0001d.p, 0001f.p, and 0001.df.
The 0001d.p procedure file is responsible for dumping any data that would otherwise be
deleted during the schema update process. The 0001.df, file contains Progress data
definition language statements describing the schema update to be performed on the table. The
0001f.p procedure is responsible for loading any data back into the database that was
dumped by 0001d.p.

Roundtable User's Guide

 4-60

4.14.2 Creating and Editing the schema.pf File
The schema.pf file is a Progress parameters file containing the startup parameters
necessary to connect to the application databases being updated. In addition to the normal
database connection parameters, the schema.pf file must contain a comment line with a
release number that indicates the release level of the current database schemas. Here is a
sample schema.pf file:

#Schema.pf file – used for the update of database schema
#release=0021
-db sports.db -ld sports -1 -U "" -P ""

Progress considers lines beginning with # in a parameters file to be comments. The
_update.w procedure uses the #release= token to establish the current release level of the
database so it can select the correct database update package from the rtb_dbup directory.

If the schema.pf file is created by the _update.w procedure, it contains the following
default values:

#Schema.pf file – used for the update of database schema
#release=empty

Enter the database connection parameters manually or choose the pf Entry button. The pf
Entry button presents a series of dialog boxes that construct database connection parameters
for you and write the parameters into the editor widget containing the parameters file. After
creating the database connection parameters, the contents of the editor widget should resemble
the following example:

#Schema.pf file – used for the update of database schema
#release=empty
-db sports.db -ld sports -1 -U "" -P ""

The "#release=empty" line indicates that the database has not yet been updated with any
schema. As part of the schema update process the "#release=empty" line is replaced with a
line containing the release level of the update. For example:

#Schema.pf file – used for the update of database schema
#release=0004
-db sports.db -ld sports -1 -U "" -P ""

Workspaces

 4-61

4.14.3 Schema Release Rules
The release name specified on the #release line in the schema.pf file is derived from the
name of the subdirectory in rtb_dbup that was used to process the schema update. The rules
governing the selection of the subdirectory to use in the update are simple:

1. If #release=empty, then find and use the subdirectory in rtb_dbup that has a name four
characters long. If more than one such directory exists, use the one with the highest value.
The new #release=value line contains the name of the directory selected.

2. If #release=xxxx, then find a subdirectory in rtb_dbup that is eight characters long and
begins with the value "xxxx". If more than one such subdirectory exists, then select the
one with the highest value. The new #release=value line contains the last four characters
of the eight-character subdirectory name selected.

By default, the subdirectories created in the rtb_dbup directory are named using the release
number associated with the deployment being made and the previous release. Consider the
following example:

Deploy Rel Schema

Changes?

rtb_dbup/subdir Before install

#release=

After install

#release=

1 12 Yes-full schema 0012 empty 0012

2 13 Yes 00120013 0012 0013

3 14 No 0013 0013

4 15 Yes 00130015 0013 0015

When no schema updates are included in a deployment, no schema update package directory
is created as is shown in deployment 3 above. Then the _update.w program can determine
that no update was delivered and skip the schema update process.

You override the naming of the schema update package directory created during a deployment
by specifying it in the deployment directory fill-in in the Roundtable Deployments window.
Remember that these schema update directories must be either four or eight characters long
and have collation values that follow the rules stated above to participate in the update
process.

4.14.4 Updating Database Schemas Dialog Box
When you update the schema of a database at a remote site, the Updating Database Schemas
dialog box appears. This dialog box contains an editor widget in which each step of the
database schema processing is displayed.

Roundtable User's Guide

 4-62

Each possible step in the processing is audited by this dialog box. The steps include:

1. Scanning the rtb_dbup directory for schema update packages. The release number in
the schema.pf file is used to identify which schema update package should be used in
the update process. The contents of the selected schema update directory are copied into
rtb_idat. This step is skipped if an rtb_idat/schlock file exists (see step 3).

2. Expanding the rtb_idat/schctrl file for database "copies" identified in the
schema.pf file. See the "Database Copies" section in this chapter. This step is skipped
if an rtb_idat/schlock file exists.

3. Writing a process lock file named rtb_idat/schlock.

4. Compiling the schema update subroutine procedures.

5. Running the database dump procedures to preserve the data that would be lost because of
the schema updates.

6. Updating the schema for each database.

7. Running the database load procedures to restore dumped data.

8. Removing the process lock file rtb_idat/schlock.

9. Removing the temporary files copied from the schema update package directory into
rtb_idat.

4.14.5 Database Copies
In many Progress applications, it is useful to create copies of the application database. For
example, each department in a company might have a separate application database but use
the same application code. Each of these database copies must have the same cyclical
redundancy check (CRC) stamp to use the same compiled application code. The update
process can keep the CRC in each of these databases in sync by applying schema updates
against each database in exactly the same order.

To update these database copies, the installation process must know about each database copy
created at the site. This is done by adding a line in the schema.pf file that identifies the
database copy. Consider this schema.pf example:

#Schema.pf file – used for the update of database schema
#release=0004
-db sports.db -ld sports -1 -U "" -P ""

#dbcopy=sports sports2 sports2
-db sports2.db -ld sports2 -1 -U "" -P ""

This schema.pf file contains two database connections and a special #dbcopy= line that

Workspaces

 4-63

instructs the schema update process to treat the sports2 database as if it has the same schema
as the sports database. When the two databases start out with the same CRC stamp, the install
process keeps them CRC compatible by applying schema updates to each in exactly the same
order.

The #dbcopy= line requires three values.

• First, the logical database name of the database whose schema is duplicated in the
database copy.

• Second, the logical name of the database copy.

• Third, the name of a temporary directory into which data dumped from the dbcopy
database should be placed in stage one update schema processing. This prevents the data
dumped from the first database and that dumped from the second database from being
confused.

The schema update process performs an additional step when multiple database copies exist.
This additional process expands the content of the rtb_idat/schctrl file to include
entries for each of the files requiring update in each database copy. An additional line is added
to the top of the rtb_idat/schctrl file with the token EXPANDED so that the
rtb_idat/schctrl file never expands twice. This makes it important to register all
database copies in the schema.pf file before running the update schema process.

If the database copy is created sometime after the first installation of your application, the new
copy must be created from a copy of an existing database. There are strategies for
accomplishing this:

• Maintain at least one copy of the application database at each site that is never populated
with data. This database can be used as the source database when creating a new database.

• Make a copy of an existing database and then purge data from it. This is generally a bad
idea because Progress does not shrink the footprint of a database on disk. This can be
circumvented by a dump and reload of data for the source database.

4.14.6 Deploying Both a Full and Incremental Schema Update
A single schema update package directory is created when you create a deployment. However,
the _update.w process can recognize and process more than one database update package
directory if they exist. This allows the user to assemble a multi-release deployment.

A multi-release deployment is useful if you must send a deployment to sites that may be at
different release levels of your software. You create a multi-release deployment by combining
the contents of one or more deployments into a single deployment package.

For example, if the latest release of your system is 8.0A and you want to distribute the same
package to both existing 7.3C clients and completely new clients, you would need to create a

Roundtable User's Guide

 4-64

multi-release deployment.

Follow these steps to create a multi-release deployment containing the full source and schema
for the latest release level, as well as the schema update information to bring an existing
application database from a previous schema release level to the latest schema release level.

1. Create a new site.

2. Create a deployment in your new site using the desired release level. Name the schema
update directory with the four-character name of the latest schema release level.

3. Build the schema update table and make the deployment directory.

4. Create a second new site.

5. Create a deployment in the second new site with the release level from which you want
this package to upgrade existing clients.

6. Complete the deployment described in the previous step. It is not necessary to build that
deployment.

7. Create a second new deployment in the second new site. The schema update directory
must have an eight-character name. The first four characters must be the name of the
previous schema release level. The last four characters must be the name of the latest
schema release level.

8. Build the schema update table and make the deployment directory.

9. Copy the eight-character schema update subdirectory from the second deployment's
rtb_dbup directory. Copy that directory into the rtb_dbup subdirectory of the first
deployment.

The first deployment directory is now a multi-release deployment directory. The rtb_dbup
directory contains a four-character subdirectory named with a complete definition of the latest
schema release level. The rtb_dbup directory also contains a subdirectory with an eight-
character name, which contains the schema update information necessary to update an existing
application database from the previous schema release level to the latest schema release level.

It is not necessary to retain the Roundtable site records created in these steps. Also, it is not
necessary to keep the second deployment directory on disk. It was only created so that you
could copy the incremental schema update directory from it.

5
Task Management

5.1 Introduction
After you set up your system and create your products, Product Modules, and workspaces, you
should be ready to begin programming. The first step is to create Tasks. A Task defines work
to be done in a workspace.

An object is a component of your Progress application: a piece of code, a file, a field, a piece
of text, or a part of your database schema definition. Objects are created and modified under
the current Task. This chapter explains both Tasks and objects in depth.

Roundtable User's Guide

 5-2

5.2 What Is Task Management?
Task management is the process of changing or adding objects. The following flow chart
illustrates the Task management process:

Manager
wants to have

an object
changed
or added.

Manager
assigns

a task to a
programmer.

Programmer
selects the

task.

Programmer
checks the
object out

into the task.

Programmer
makes the

change
to the object.

Programmer
checks the

object back in
and completes

the task.

1 2 3

4 5 6

5.2.1 Benefits of Task Management
Task management is useful because it:

• Helps programmers track work done in logical units (Tasks)

• Facilitates check-in of many objects at once

• Gives managers access to important information about the work being performed in the
workspace

• Allows the programmer to keep track of many concurrent Tasks

• Allows programmers and managers to see quickly what others are doing in the workspace

5.2.2 How Objects Relate to Task Management
You can add different types of objects to your workspace and use different views to show the
objects assigned to your workspace and how they interrelate. For example, the Modules view
shows which objects are assigned to your Product Module, and the Task view shows which of
those objects are checked out into your Task. You can see where and how an object is used in
your system and print several object reports.

Task Management

 5-3

5.3 Task Maintenance
After you set up your Roundtable system, you are ready to begin work. If you have many
programmers working on one project, control and track this work by dividing it into Tasks.
Task maintenance covers adding Tasks, editing Tasks, deleting Tasks, selecting Tasks,
completing Tasks, and printing Task reports.

5.3.1 Tasks Window Description
The Tasks window displays a selection list showing all the Tasks. The selection list shows the
Task number, status, and summary of each Task. Each Task has a status of either W (work-in-
process) or C (complete). You can filter the Tasks by selecting options in the Browse By
panel.

Field Description

Browse By A radio button that allows you to select for whom and in what
order Tasks should be displayed.

Task # Displays the Task number assigned to each Task by the system.

Status Displays each Task's status: work-in-process(W) or
complete(C).

Summary A fill-in for the Task's description.

Roundtable User's Guide

 5-4

Field Description

Manager A fill-in for the ID of the manager assigning the Task.

Programmer A fill-in for the ID of the programmer responsible for the Task.

User Ref A fill-in for your own use. This field is indexed, but unused by
Roundtable. You can build your own reports to get information
from the repository quickly using your own key values.

Workspace Displays the workspace ID code.

Entered Displays the date the Task was created.

Completed Displays the date the Task was completed.

Compl. By Displays the ID of the person who completed the Task.

Share Status A radio button set that allows you to choose one of the
following Share Statuses for the highlighted Task:
Central: Programmer modifies objects in the workspace
directory. Others can see changes immediately.
Task: Roundtable checks out objects to a Task directory where
the programmer modifies them. Others do not see the changes.
The last completed version of the checked out object remains in
the workspace directory for others to use.
Group: Roundtable checks out objects to a Task directory
where the programmer modifies them. Others do not see the
changes until the programmer executes the Update
Group/Public Source option, which copies the modified objects
into a group directory. Other programmers can choose to see
these changes by attaching one of their Tasks to the group. The
last completed versions of the objects remain in the workspace
directory.
Public: Roundtable checks out objects to a Task directory
where the programmer modifies them. Others do not see the
changes until the programmer executes the Update
Group/Public Source option, which copies the changes into the
workspace directories.

Directory A fill-in for the full path to a Task directory. If you specify a
Share Status other than Central, you must fill this in. Objects

Task Management

 5-5

Field Description
from the workspace, checked out under the Task, populate this
directory structure. In the Task directory, Roundtable creates
the portion of the workspace directory hierarchy in which the
object is stored. For example, if an object is stored in a
subdirectory named .\ar in the workspace, then the .\ar
subdirectory is created in your Task directory when you check
out the object under the Task.

Description tab Notes on why selected Task was created.

Objects tab Object version created in the selected Task.

5.3.2 Share Status
The Roundtable Share Status feature allows multiple programmers to work in the same
workspace, isolating each programmer's work so that other programmers are not affected.
Depending on the Share Status, the other programmers might see objects that are currently
being worked on. The Share Status determines the location of the source files modified under
the Task.

Roundtable automatically modifies the Progress PROPATH so that directories are always
searched in this order:

• Task directory (if one is defined for the current Task)

• Group directories (if the current Task belongs to any groups)

• Workspace directory

You can change the Share Status of an object or Task at any time. Roundtable moves the
objects to and from the workspace directory as required. It is possible to have some objects in
a Task with a different Share Status than that of the Task. However, if a Task has no Task
directory assigned, then all objects in that Task must have a Share Status of Central. As
objects are checked out under a Task they are given the Share Status specified for the Task by
default.

• Central: Programmer modifies objects in the workspace directory. Others can see
changes made immediately. No Task directory is necessary if all objects under a Task
have this status.

• Task: Roundtable checks out objects to a Task directory where the programmer modifies
them. Others do not see the changes. The last completed version of the checked-out object
remains in the workspace directory for others to use.

• Group: Roundtable checks out objects to a Task directory where the programmer
modifies them. Others do not see the changes until the programmer executes the Update

Roundtable User's Guide

 5-6

Group/Public Source option, which copies the modified objects into a group directory.
Other programmers can choose to execute the changes by attaching one of their Tasks to
the group. The last completed versions of the objects remain in the workspace directory.

• Public: Roundtable checks out objects to a Task directory where the programmer
modifies them. The changes are not viewed or executed by others until the programmer
executes the Update Group/Public Source option, which copies the changes into the
workspace directories.

If you specify a Share Status other than Central you must supply a full path to a Task
directory. Objects from the workspace, checked-out under the Task, populate this directory
structure. In the Task directory, Roundtable creates the portion of the workspace directory
hierarchy in which the object is stored. For example, if an object is stored in a subdirectory
named .\ar in the workspace, then the .\ar subdirectory is created in your Task directory when
you check out the object under the Task.

You can use the same Task directory for one or more Tasks. This makes all changes in each
Task sharing that directory visible to each other without having to define groups. Tasks
belonging to different programmers should never share the same Task directory.

5.3.3 Adding a Task
In your role of manager, you parcel out work by assigning Tasks to programmers. Each Task
is specific to one workspace, one manager, and one programmer. Each Task has a summary
that should be descriptive of the entire Task. You can enter more detailed information in the
note field at the bottom right corner of the window.

Follow these steps to add a Task in Roundtable:

1. Choose Task→Task Maintenance from the Tabletop menu. The Tasks window appears.

2. Choose the Add Record () button. You must be browsing Tasks by workspace in
order to add a new Task.

3. Enter a brief description of the Task in the Summary field.

4. To change the Manager and Programmer(s) fields from the default (your user ID) enter
the correct IDs. Use the lookup () button on the Programmer(s) field to assign more
than one programmer to the Task.

5. OPTIONAL. Fill in the User Ref field. The User Ref field is an indexed field. Roundtable
does not use this field. It is for your reference only and can be used to tie Tasks to other
tools and systems.

6. Change the Share Status if necessary. If the Share Status is Task, Group, or Public, you
must assign a Task directory in the Directory field.

Task Management

 5-7

7. Choose the Save Record () button. The Task is created.

8. Select the Description tab to enter a more detailed description of the Task. Choose the
Save Record button when finished entering the description.

9. Choose File→Exit to exit this window.

5.3.4 Editing a Task
Although you can never change the Task number, you can change the Summary, Manager,
Programmer, Share Status, and User Ref fields, and the notes for a Task you manage.

1. Choose Task→Task Maintenance from the Tabletop menu. The Tasks window appears.

2. Select the Task that you want to edit in the browse table.

3. Edit the Task information.

4. Choose the Save Record () button to complete your update.

5. Choose File→Exit to exit this window.

5.3.5 Deleting a Task
You cannot delete a Task if objects are checked out or have been checked in under the Task.
If you change your mind about needing the Task right after you add it, you can delete it.

1. Choose Task→Task Maintenance from the Tabletop menu. The Tasks window appears.

2. Select the Task that you want to delete in the browse table.

3. Choose the Delete Record () button. A warning dialog box appears.

4. Choose the Yes button to delete the Task.

5. Choose File→Exit to exit this window.

5.3.6 Selecting a Task
Once a Task has been assigned to you as a programmer, you must select it before you can add
or edit objects in the workspace.

To select a Task, choose it from the Task drop-down list on the left side of the Tabletop:

Roundtable User's Guide

 5-8

5.3.7 Completing a Task
After you have made all the necessary changes, you can complete the Task. Completing the
Task gives all objects in the Task a C (complete) status. Before completing the Task, ensure
that:

• All objects have a Share Status of Central

• The schema changes are updated to the databases

• All objects compile correctly

If Roundtable finds an object with a Share Status other than Central, use the Objects in Task
tool to change the Share Status to Central. See the "Changing the Share Status of a Task"
section in this chapter. If Roundtable finds an object that does not compile, you must fix the
problem before completing the Task.

1. Choose Task→Task Maintenance from the Tabletop menu. The Tasks window appears.

2. Select the Task to complete in the selection list.

Task Management

 5-9

3. Choose the Complete button. The Complete Task dialog box appears.

By default, the Orphans and Dependencies toggle boxes are checked. Leave these Pre-
compilation checks enabled unless you have a specific reason to disable them.

4. Choose the Continue button to complete the Task.
NOTE: If Roundtable cannot compile one or more of the objects, the following error
message box appears. The errors are detailed in the status area of the Complete Task
dialog.

5. Choose File→Exit to exit this window.

5.3.8 Task Report
The Task Report option provides information on each of the object versions created under the
selected Task. This report groups the objects by object type and provides the following
information for each object:

• Object name

• Description of the object

• Version number

• Current status

• Subtype (for PCODE objects)

For PFIELD objects, the report also lists the type, extent, number of decimals, label, location,
format, initial value, and other field information.

Roundtable User's Guide

 5-10

Follow these steps to print the Task report:

1. Choose Reports→Task→Task Report from the Tabletop menu. The Task Report window
appears.

2. Select the desired report options:

• This report can be based on a range of Tasks. Enter the starting Task number to report on.

• Enter the ending Task number to report on.

• Enter the workspace ID to report on, or enter “*” to report on Tasks from all workspaces.

• Select Show Task Notations to print the Task notations. Task notations are not available
in the GUI version of Roundtable, but if you print a Task created with the character mode
client, you can print them under the GUI version.

• Select Show Objects in Task to print all the object versions created by this Task.

• Select Object Details to print details about the object.

• Select Show Version Notes to print the programmer's notes.

3. Choose the OK button.

5.3.9 Object Orphans in Task Report
The Object Orphans in Task Report gives you the name and number of any orphan records
relating to objects under the Task. Follow these steps to print the Object Orphans in Task
Report:

1. Choose Reports→Task→Object Orphans in Task Report from the Tabletop menu. The
Object Orphans in Task Report window appears.

2. Verify the Task number for the report and choose the OK button.

5.4 Task Activities
Now that you know the basic procedures for working with Tasks, you can explore more ways
to work with Tasks, including:

Task Management

 5-11

• Listing Objects in a Task

• Finding a Task

• Selecting no current Task

5.4.1 Checking Out an Object
Follow these steps to check out an object.

1. Choose the object to check out from the object browse table in the Tabletop. You cannot
check out an object that already has a W (work in process) status because it is already
checked out by another Roundtable user.

 Choose the button. The Check Out dialog box appears.

2. The Check Out dialog box contains the Product Module, object name, and current version
number for the selected object.

3. Choose whether you want to increment the Version Level, Revision Level, or Patch Level
number by selecting the respective radio button.

4. Determine the level according to your company's policy. A patch might be used for a
minor change, a revision for a major change, and a version for a complete overhaul.

5. Choose the Increment button. The selected level increases by one. For example, if the
version number was 010000 and you choose to increment the revision level, the new
version number would be 010100.

6. If the source of the OS file in the workspace directory differs from the source in the
repository, when an object is checked out, a warning dialog appears. You may select one

Roundtable User's Guide

 5-12

of the two files to work with or cancel the operation.

7. This resolves the discrepancy, or if there is none, and the object is now checked out into

your Task.

5.4.2 Creating an Object Variant
Roundtable allows you to create more than one variation of the same object called a variant.
Variants have the same name and type but belong to different Product Modules. See the
"Object Variants" section in Chapter 4.

Follow these steps to create an object variant. When you create an object variant, it will be
Version 1.0.0, with a Work In Process (WIP) status. The original object cannot be WIP when
you are creating a variant of it.

1. From the Tabletop menu, choose File→Create Object Variant. The Create Object Variant
dialog box appears.

NOTE: You must have a Module selected in the Tabletop TreeView to enable the Create
Object Variant menu item.

2. Select the new Product Module that your new object variant will be assigned to. This
must be a different Product Module than the one that the original object is assigned to.

3. Choose the Save Record () button. The following dialog box appears:

Task Management

 5-13

4. Choose Yes. The object variant is created and displayed, and you are returned to the

Tabletop. You can see that your new object variant is Version 1.0.0, and its status is WIP.
You can also see that this object’s Product Module is the one that you specified in the
previous step. Your new custom variant is now a part of your workspace. The original
object variant is no longer assigned to this workspace.

5.4.3 Checking In an Object
You cannot check in an object until it has an update status of Current. A PCODE object's
update status is changed to Current when the object has a Share Status of Central and a
successful compile with xref has been performed. A schema object's update status is changed
to Current after a successful schema update process. The check in process changes the object's
status to C (complete) and permanently stores the contents of the object version in the
repository.

Follow these steps to check in an object:

1. From the object browse table in the Tabletop, select the object you want to check in.

2. Choose the button. The Object Completion dialog box appears.

3. (Optional) Toggle Store Full Source on to store the full source code or off to store just the

changes in the repository. This option is not shown for schema objects or PCODE objects
that track binary files because these objects are not stored as incremental differences.

4. Choose the OK button. The object version is stored permanently in the repository and the
Status of the object is changed to C (complete).

5.4.4 Listing Objects in a Task
Each time an object is checked out from the workspace into a Task, it is assigned a new

Roundtable User's Guide

 5-14

version number. The Objects in Task tool displays a table that lists all the objects assigned to a
Task. The table displays the object name, object type, version number, and status for each
object created under the specified Task.

From this window, you can also:

• Change the Share Status of one of the object versions

• Change the Share Status of all of the object versions

• Promote all objects with a Share Status of Group from the Task directory to the group
directories for each group with which the Task is associated

• Promote all objects with a Share Status of Public from the Task directory to the
workspace directory

Follow these steps to display the object versions created under a Task:

1. Choose Task→Task Maintenance from the Tabletop menu. The Tasks window appears.
Select the Objects tab.

2. This folder contains all the object versions created under this Task. For each object, the

table lists the Version, Object, Status, Product Module and Type. The radio buttons
below the list show the Share Status for the select object.

3. Choose File→Exit to close the window.

5.4.5 Changing the Share Status of Objects
Follow these steps to change the Share Status of objects in a Task.

Task Management

 5-15

NOTE: If you want to change the Share Status of an object in the Task to something other
than Central, the Task must have a Task directory defined.

1. Choose Task→Task Maintenance from the Tabletop menu. The Tasks window appears.
Select the Objects tab.

2. Select one or more (using Ctrl-click) objects for which to change the Share Status.

3. Choose one of the Share Status radio buttons: Central, Task, Group, or Public. A warning
dialog box appears.

4. Choose the Yes button to confirm the operation.

5. Choose File→Exit to close the window.

5.4.6 Promoting Task Objects
When an object has a Share Status of Group or Public, the work performed on the object is
visible only in the Task directory until it is promoted. The promotion process copies the
source files of the object to group and/or workspace directories as necessary. You choose
when this promotion occurs. This intermittent update of the shared group directories or
workspace directories can be very helpful when you have not finished working on a given
object, but it is necessary for others to use or review that work.

1. Choose Task→Task Maintenance from the Tabletop menu. The Tasks window appears.
Select the Objects tab.

2. Check the Promote all Group Source and/or Public all Source toggle box(es).

3. Choose the Refresh button. A warning dialog appears.

4. Choose Yes to promote the Public/Group source.

5. Choose File→Exit to close the window.

5.4.7 Finding a Task
If you know a Task number, you can use the Find feature on the Tasks window to select the
Task quickly.

1. Choose Task→Task Maintenance from the Tabletop menu. The Tasks window appears.

2. Choose Search () button. The Find dialog box appears.

Roundtable User's Guide

 5-16

3. Enter the desired Task number and choose the OK button. If the Task is found,
Roundtable selects the Task in the Tasks browse table.

5.4.8 Selecting No Current Task
To browse a workspace without a current Task:

1. Select "0 <None>" from the Tasks drop-down list in the Tabletop.

5.5 Task Groups Maintenance
Task Groups allow the changes in one or more Tasks to be seen at the same time. For
example, use Task Groups when two programmers are working on different Tasks but must
see each other's work.

Task Groups are useful only with Tasks that do not have a Central Share Status because work
done under a Task with a Central Share Status is visible to all users of the workspace.
Remember that Roundtable sets the PROPATH so that code is seen first in any local Task
directory, then in any group directories, and finally in the workspace directory.

Task Group directories must reside on the same drive as the workspace and use the same drive
mappings as the workspace to which they belong.

A Task Group is assigned a group directory, which is never accessed directly by a
programmer. Instead, the Task promotion process copies the source from the Task directories
into the group directory at the request of the programmer owning the Task.

A Task assignment associates a Task with a group. A Task can be associated with up to nine
Task Groups. All of these Task Groups are updated when the Task promotion process is
executed.

5.5.1 Task Groups Window Description
This window contains two lists: Task Groups and Assigned Tasks. Select a Task Group to see
the Tasks assigned to it.

Task Management

 5-17

The following table describes the fields and buttons in the Task Groups panel:

Field or Button Description

Workspace The Workspace that the Task Groups belong to.

Task Group You supply a Task Group code when you add a new Task
Group.

Directory This is the path to the directory under which code from Tasks
belonging to the Task Group will be placed when promoted by
the owners of the Tasks.

The following table describes the fields and buttons in the Assigned Tasks panel:

Field or Button Description

Task# The Task number of a Task associated with the group.

Summary The summary description of the Task.

Add button Choose this button to add a Task to the Task Group.

Remove button Choose this button to remove a Task from the Task Group.

5.5.2 Adding a Task Group
Follow these steps to add a new Task Group:

Roundtable User's Guide

 5-18

1. Choose Task→Task Groups from the Tabletop menu. The Task Groups window appears.

You must be logged in as the sysop user to perform Task Groups maintenance.

2. Choose the Add Record () button. Fill in the Task Group and Directory fields, and

then choose the Save Record () button.

3. Add one or more Task Group assignments in the Assigned Tasks panel. For detailed
instructions, see the "Adding a Task Group Assignment" section in this chapter.

4. Choose File→Exit to close this window.

5.5.3 Editing a Task Group Directory
When you edit a Task Group directory, the files in the old directory are moved to the new
directory.

Follow these steps to edit a Task Group directory:

1. Choose Task→Task Groups from the Tabletop menu. The Task Groups window appears.

You must be logged in as the sysop user to perform Task Groups maintenance.

2. From the selection list in the Task Groups panel, select the Task Group to edit.

3. Edit the Task Group Directory field, and then choose the Save Record () button.

4. Choose File→Exit to close this window.

5.5.4 Deleting a Task Group
Before you can delete a Task Group, you must delete each Task that is assigned to it. Deleting
Task assignments does not affect the associated Tasks in any way.

Follow these steps to delete a Task Group:

1. Choose Task→Task Groups from the Tabletop menu. The Task Groups window appears.

You must be logged in as the sysop user to perform Task Groups maintenance.

2. From the selection list in the Task Groups panel, select the Task Group to delete.

3. Choose the Remove button in the Assigned Tasks panel if any Task assignment exists. A
warning dialog box appears. Choose the Yes button.

4. Repeat step 3 for each Task assigned to the selected Task Group.

5. Choose the Delete Record button (). A warning dialog box appears. Choose the Yes
button.

Task Management

 5-19

6. Choose File→Exit to close this window.

5.5.5 Adding a Task Group Assignment
Follow these steps to add a Task Group assignment:

1. Choose Task→Task Groups from the Tabletop menu. The Task Groups window appears.

You must be logged in as the sysop user to perform Task Groups maintenance.

2. From the selection list in the Task Groups panel, select the Task Group to which
assignments are to be added.

3. Choose the Add button in the Assigned Tasks panel. The Select Tasks Assignment dialog
box appears.

4. Select one or more tasks, and hen choose the OK button. In the Assigned Tasks panel, the

Task appears as a new Task assignment.

5. Choose File→Exit to close this window.

5.5.6 Deleting a Task Group Assignment
Follow these steps to delete a Task Group assignment.

1. Choose Task→Task Groups from the Tabletop menu. The Task Groups window appears.

You must be logged in as the sysop user to perform Task Groups maintenance.

2. From the selection list in the Task Groups panel, select the Task Group from which an
assignment is to be deleted.

3. Select the Task assignment to delete in the Assigned Tasks panel.

4. Choose the Remove button in the Assigned Tasks panel to delete the Task assignment. A
warning dialog box appears. Choose the Yes button.

5. Repeat steps 3-4 for each Task assignment to delete.

Roundtable User's Guide

 5-20

6. Choose File→Exit to close this window.

5.6 Task Notations
Roundtable provides a simple screen in source form (rtb/w/rtb_tnot.w) for maintaining
additional Task information. The table maintained by this screen is called rtb_tnot (Task
Notes). Any number of rtb_tnot records can be related to a Task. This table includes a number
of free-form fields, and fields for tracking such things as estimated and actual hours.

rtb_tnot.w is intended to be modified to fit your own Task information needs. How you use the
fields in the rtb_tnot table is entirely up to you.

Roundtable does not use the rtb_tnot table except in these three places:

• rtb_tnot.w - Task Notes maintenance screen.

• The Task report. It shows Task notations for the Tasks being reported on.

• When a WIP Task is deleted, any rtb_tnot records associated with it are deleted.

This is what the Task Notations screen looks like as provided with Roundtable:

To access Task notations for your current Task, choose Task→Task Notations from the
Tabletop menu.

6

Objects

6.1 Introduction
All workspaces are comprised of collections of Roundtable objects. These objects are of one
of the following types:

• PCODE: A collection of up to 10 files that define a component of the software
application

• PFIELD: A database schema definition for a field

• PFILE: A database schema definition for a table

• PDBASE: A database schema definition for a database

• DOC: A special type used for documentation objects

Roundtable User's Guide

 6-2

6.2 The Repository
Objects are stored in the Roundtable repository. The Roundtable repository can store many
different versions of the same object. When you add a new object, you create the first version
of that object, which is numbered 01.00.00. This version code has three parts: Version Level,
Revision Level, and Patch Level. All objects are created in a workspace with an initial status
of Work-In-Process (WIP). When you create an object, you assign it a Name, Type, and
Product Module. The Product Module, Type, Name, and Version Code constitute the unique
key of the object in the repository.

An object does not become a permanent part of the repository until you check it in. Checking
it in changes the object's status from WIP to Complete. It is not possible to delete an object
from the Roundtable repository once it has been completed. However, you can remove the
object from the workspace. Remember that a workspace is a collection of objects that
represents a configuration of your software application. Deleting an object removes the object
version from this configuration.

One last point about deleting object versions: if you delete the first version of an object while
it still has a WIP status it does not become a permanent object in the repository. So, if you
inadvertently create an object that you really do not want, you can delete it.

You may assign any object version available in the repository to any workspace. Since the
object already exists, such assignments are not considered part of your current task.

6.2.1 Object Versioning and Tasks
Before you can create or modify any object you must have a current task. It is not unusual to
create or modify multiple objects under the same task. The task number, under which the
object version was created, is stored in the object. This provides traceability between the
object version and the task. For information on using tasks, see the "What is Task
Management" section in Chapter 5.

When you want to modify an existing object, you must check out the object under a task. This
creates a new version of the object and gives the object a work-in-process (WIP) status
(checked-out). While you have the object checked out, no other programmer, in the current
workspace, can check it out. If the object is subsequently checked out in some other
workspace, Roundtable warns the user that an object orphan condition exists.

When you check out the object, you choose whether to increment the Version Level, Revision
Level, or Patch Level of the version code. The new object version becomes a permanent
resident of the repository, and the object's status changes to complete (checked-in).

Objects

 6-3

6.3 Object Properties Window Folders
Each object type is associated with one or more folders of information. These folders are
displayed in the Object Properties window, which is viewed by choosing View→Object
Properties from the Tabletop menu. Alternately, you can view the Object Properties window
by right-clicking on an object displayed in the Object browse, and then selecting Properties
from the popup menu. This chapter describes how to add each object type and the contents of
their folders.

All objects share the Spec, Task, and Note folders.

6.3.1 Spec Folder Description
The Spec folder displays general repository information about the currently selected object.

Field Description

Type Displays the object type assigned when created.

Subtype Displays the object subtype value you assigned to the object when
created .

Pmodule Displays the Product Module value you assigned to the object when you
created the object.

Version Displays the version code for the object. The version code is 01.00.00
when the object is created. Subsequent versions are incremented by
version level, revision level, or patch level as specified by you on check
out.

Roundtable User's Guide

 6-4

Field Description

Status Displays object status as either Checked in or Checked out. A note will
also be here displayed if the object needs to be compiled.

Event Displays the workspace event number associated with the object version
in this workspace. This value is stored in the workspace configuration list
record.

Desc. Displays a brief description of the object.

Synopsis
(Below Desc.)

A synopsis can be entered describing the function of the object.

6.3.2 Task Folder Description
This folder displays a brief description of the task under which the currently selected object
was created.

Field Description

Task# Displays the task number.

Manager Displays the user who assigned the task.

Programmer Displays the programmer who performed the task.

User Ref Displays a user-defined reference value associated with the task. This
field is indexed but is not used for any purpose by Roundtable.

Workspace ID Displays the workspace where the task was performed.

Objects

 6-5

Field Description

Completed Displays the date on which the task was completed.

Summary Displays a short description of the purpose of the task.

Synopsis
(Below
Summary)

A more detailed description of the work done under the task.

6.3.3 Note Folder Description
The Note folder contains comments that the programmer entered when working on the object
version. This note should explain why the changes were made to the object to create this
object version.

6.3.4 Version Note Dialog
Each time you make an edit to any object in the system you are presented with the Version
Note dialog after you complete your edit (unless disabled in Preferences). The entries you
make in this dialog are an important tool in communicating with other team members about
the changes you have made in the object. The information you enter in this dialog appears in
the Note folder. Later you will find it helpful to scroll through object versions and see the
progression of changes made in each version without having to dig into the code. Use these
notes to summarize the changes you have made.

Enter notes about your changes in the Version Notes dialog box:

Roundtable User's Guide

 6-6

6.4 PCODE Objects
You can use PCODE objects to store almost any kind of data in the Roundtable repository by
defining custom Code Subtypes that tell Roundtable how to process the data when it is stored
into and retrieved from the repository.

PCODE objects are maintained in the Config folder. You can run the procedure editor from
Roundtable to edit a PCODE object.

PCODE objects store program or include files and, if necessary, other text files such as shell
scripts. PCODE objects can also store binary data like bitmaps. The PCODE definition
records the:

• Compile time parameters of programs

• Deployment options

• Documentation entered by the programmer about the purpose of the object

You must assign a subtype to each PCODE you create. The subtype defines the type of source
the PCODE object represents (window, program, form, etc.). Subtypes allow you to track up
to nine related text files as a single object. For more information on subtypes, see the
"Subtypes" section in Chapter 3.

6.4.1 Config Folder Description
The Config Folder contains information about how Roundtable should process the object in
the workspace configuration.

Objects

 6-7

The Config folder contains the following fields:

Field &
Buttons

Description

Encryption A set of toggle boxes that designate which type of remote sites should
receive encrypted code. The type of remote site is determined when
creating deployments. See the "Deployments" section in Chapter 4.

Compiles? A toggle box that indicate whether Roundtable should compile this
procedure.

Runable A toggle box that indicates that the PCODE object is a procedure that
you can run directly from Roundtable. A procedure that expects
parameters to be passed cannot be run from Roundtable.

Save .r code A toggle box that indicates that Roundtable should produce R-code for
the object during compile. Note that this flag might be overridden by
the R-code flag in the Workspace Modules window or the Workspace
Maintenance Window.

Deploy A toggle box that indicates if this object is to be included in
deployments of your application.

Binary A toggle box that indicates if the file is a binary file (ex: a bitmap file).
Roundtable for MS-Windows automatically detects whether or not the
file is binary. Binary files receive special handling for storage in the
repository. They are read in and written out as binary files, but
converted to text for storage in the repository. Roundtable does not
store deltas for binary files; the entire file is stored for each new
version.

Roundtable User's Guide

 6-8

Field &
Buttons

Description

Objcopy A toggle box that indicates that the object should be copied to the
alternate r-code directory if an alternate r-code is specified during the
installation of a deployment at an end-user site. This attribute is
typically used for images and other non-compilable objects that are
required for proper functioning of the application.

WRX Path and
WRX File

Roundtable can manage the versioning, migration, and deployment of
WRX files for you. See the “WRX Files” section in this chapter for a
complete description of how Roundtable does this.

If Roundtable finds that you have used an OCX in the current PCODE
object, then the name of the WRX file and the directory that it was
found in are both displayed. If the current PCODE object does not
reference a WRX file, then these fields are left blank.

Object Compile
Parameters

Compile syntax parameters to be used when compiling this object.
Normally, this field can be left blank. It is most often used for objects
with support for multiple languages.

Override All
Other

Does this object’s compile parameters override the workspace or
Workspace Module compile parameters? Use this field to have
Roundtable ignore workspace or Workspace Module compile
parameters when compiling this object. Only the object’s compile
parameters will be used.

If this field is toggled off, then the object’s compile parameters are
used in addition to the workspace or Workspace Module compile
parameters. (If there are compile parameters defined for the module,
then the workspace compile parameters are ignored. Only the module
and object compile parameters will be used.)

Check Now
Button

Choose this button to check the syntax for the compile parameters for
this object.

6.4.2 Adding a PCODE Object
Follow these steps to add a new PCODE object:

1. Select a Workspace and Task on the Tabletop.

2. Choose File→New Object from the Tabletop menu. The New Object window appears.

Objects

 6-9

3. Select the PCODE from the Type drop-down list.

4. From the Product Module drop-down list, select the Product Module that the object will
belong to. Only those Product Modules associated with the current Workspace Module
are available.

5. Type in or select the object Group, and type in the Level. These fields are used to sort
objects in the Workspace Module, and are part of the configuration list, not part of the
object version record in the repository.

6. Select a Code Subtype from the Subtype drop-down list. The corresponding file extension
is automatically provided.

Enter an object name and a short description of the object in the Object and Description
fields, respectively. Do not type a file extension for the object name if one is provided by
the selected Subtype.

7. Choose the Save Record () button. A warning dialog appears showing the object
details.

8. Choose the Yes button to create the new object.

9. If you have no more objects to create, choose File→Exit to close the New Object
window.

NOTE: Roundtable tests the naming conventions by checking the fields entered on the
Roundtable Code Subtypes window against the information entered in the New
Object dialog box. For more information, see the "Subtypes" section in Chapter 3.

6.4.3 Object Name Aliasing
Within a workspace, two objects cannot have the same name, even if they are in different

Roundtable User's Guide

 6-10

subdirectories. If you must have two objects with the same name in a workspace, use the
object name aliasing feature.

Roundtable has reserved the @ character for the object name aliasing feature. Use the @
character in the first position in an object name. When you enter an object name using the @
character, Roundtable prompts you for filenames for each of the subtype part files associated
with that object. For example, if you must have a post.p program in both the ap and ar
subdirectories, use object name aliasing to name the second object @post.p.

Generally, you should not use this feature unless your existing Progress application has
duplicate filenames. Try to assign a unique name to each object in your application.

Object name aliasing is only available for PCODE object types. It cannot be used with schema
objects or DOC objects.

6.4.4 Editing the Config Folder
You can only edit an object's configuration information if you have it checked out under your
current task. Follow these steps to edit the Config folder:

1. From the object browse on the Tabletop, select a PCODE object. If the Object Properties
window is not visible, choose View→Object Properties from the Tabletop menu.

2. Choose the Config folder tab. The Config folder opens.

3. Edit the fields in the folder. On your first change to any field in the folder, the Save

Record () and Reset () buttons are enabled.

4. Choose the Save Record () button.

6.4.5 Editing a PCODE Object
You can open an editor to edit a PCODE object from inside Roundtable. If a PCODE object
includes more than one subtype part, a dialog box lists the parts of the object. You choose
which parts to edit.

Follow these steps to edit a PCODE object:

1. From the object browse on the Tabletop, select a PCODE object.

If you don't have the object checked out, Roundtable limits you to read-only access.

2. Choose the appropriate Edit or View button. The Edit buttons (Edit in Procedure Editor,
Edit in AppBuilder) are enabled only if the object is checked out under your current task.
If an edit procedure is defined for the object’s Subtype, any of the Edit/View buttons will
run the defined edit procedure.

Objects

 6-11

• If there is only one part to edit, the part is loaded into the selected editor.

• If the object has more than one part, the Select Parts to Edit dialog box appears. Continue
with Step 3.

3. Select the parts to edit or view.

To edit one or more parts, highlight the parts to edit and choose the OK button. The editor
windows open with each selected part loaded.

6.4.6 Unlocking Objects
When you edit WIP (Work In Process or checked-out) objects, Roundtable places a lock on
the object to prevent two Roundtable users from trying to edit an object at the same time.
When you edit a PCODE object using an editor other than AppBuilder or Procedure Editor,
Roundtable can not release this object lock automatically because it has no way of knowing
when the external editor is finished with the object. These object locks are automatically
cleared when you exit your Roundtable session or when you manually remove the lock.
Follow the steps below to remove an object lock manually.

1. Choose the object to be unlocked in the browse table.

2. Chose File→Unlock Object from the Tabletop menu.

6.4.7 WRX Files
Roundtable does the following to help you manage WRX files in your application:

• When you perform a File Save from AppBuilder, Roundtable uses AppBuilder XFTR
hooks to examine your .w program to see if it references a WRX file. See the "ADE
Hooks" section in Appendix A for details about how this works.

• If Roundtable finds a WRX file reference, it stores the name and directory of that WRX
file. The WRX file’s name and directory are displayed on the Config folder for that
PCODE object.

• When you check in your PCODE object, the WRX file is checked in along with it. The
WRX file is actually stored as the 10th object part. Since WRX files are binary,
Roundtable always handles the 10th file part as a binary file. See the "Subtypes" section
in Chapter 3 for a description of subtype parts. Part 10 of a PCODE object is only
available for the storage of WRX files.

• Because the WRX file is now stored as a part of your PCODE object, the WRX file is
automatically managed for you with all of Roundtable’s source management functions,
such as version control, imports, and deployments.

NOTE: The only time that Roundtable recognizes that your .W program uses a WRX file is
at UIB File Save time, and if the file is checked out under your current task. To have
Roundtable register your WRX files, you must open and save those programs with

Roundtable User's Guide

 6-12

AppBuilder while Roundtable is running. If you create a new PCODE object or use
Module Load to create a new PCODE object without performing a File Save from
AppBuilder, then Roundtable does not register your WRX file for you.

6.4.8 SmartObject Cross Referencing
SmartContainers call other SmartObjects using ADM/ADM2 methods. However, this causes a
problem because the XREF output from your SmartContainer does not have a direct reference
to the program name of the SmartObjects that it calls. This means that Roundtable is unable to
provide cross-reference information about where SmartObjects are used, and which
SmartObjects are called by a given SmartContainer.

Roundtable works around this problem by using the AppBuilder XFTR utilities to build an
internal procedure in your .W program called “RTB_xref_generate.” This procedure is never
run by your application but it does include lines of source that generate the SmartObject’s
cross-referencing. This feature of Roundtable is provided in source form so that its behavior
can be modified. See the "ADE Hooks" section in Appendix A for details.

NOTE: The only time that Roundtable recognizes that your .W program is a SmartContainer
that calls other SmartObjects is at AppBuilder File Save time, and only if the PCODE
object is checked out under your current Task. To have Roundtable properly cross-
reference your SmartContainer programs, you must open and save those programs
with AppBuilder while Roundtable is running. If you create a new PCODE object or
use Module Load to create a new PCODE object without performing a File Save
from AppBuilder, then Roundtable does not properly cross reference your
SmartObjects.

6.5 DOC Objects
A DOC object is a simple binary object managed by Roundtable. DOC objects by default are
not included in deployments except to partner sites. DOC objects are always stored in a
subdirectory called DOC off of the subdirectory associated with the Workspace Module the
object is assigned to. If any of these restrictions is a problem, create a subtype for PCODE
objects that behave exactly the way you want.

6.5.1 Adding a DOC Object
Follow these steps to add a DOC object:

1. Select a Workspace and Task on the Tabletop.

2. Choose File→New Object from the Tabletop menu. The New Object window appears.

3. Select DOC from the Type drop-down list.

Objects

 6-13

4. From the Pmodule drop-down list, select the Product Module to which the object will
belong. The list only contains Product Modules associated with the current Workspace
Module.

5. Enter the group and level.

6. Enter the object name and a short description.

10. Choose the Save Record () button. A warning dialog appears showing the object
details.

11. Choose the Yes button to create the new object.

12. If you have no more objects to create, choose File→Exit to close the New Object
window.

6.6 Schema Objects
Roundtable provides a complete schema management system that includes full version
control. In addition, field and file domains have been implemented to increase the consistency
of your overall database schema and reduce the amount of maintenance required for some
types of database schema changes.

Roundtable provides version control on the database schema by maintaining the database
schema information in three object types:

• PDBASE: Database information and file assignments

• PFILE: Table definition and field assignments

• PFIELD: Field definitions

PFILE and PFIELD objects are reusable definitions, often called domains. A database is
defined by a PDBASE object to which one or more PFILE objects are assigned. Each of these
PFILE object assignments defines a table in the database. Each PFILE object contains
information about the table and one or more PFIELD assignments. Each PFIELD object
assignment defines a field in the table.

Refer to the following diagram that that shows how Roundtable objects are translated into the
_(schema) tables of the Progress database:

Roundtable User's Guide

 6-14

PDBASE: Sports
PFILE Object Filename
------------------- --------------------
Customer Customer
Orders Orders
Order-Line Order-Line
...

PFILE: Customer
FFIELD Object Fieldname Order
-------------------- -------------- ---------
Address Address 10
Address Address2 20
Cust-num Cust-num 30
...

PFIELD: Address

_db

_file "Customer"

_field "Address"

Roundtable Workspace
Objects

Progress Sports
Database Schema

Filename

File definition

Field definition

Fieldname
and Order

Roundtable manages the Progress database schema by taking the database, table, and field
definitions in the configuration specified by a workspace and updating the Progress schema
tables in the application database associated with the workspace so that it conforms to the
schema definition contained in the Roundtable objects. Roundtable allows any number of
databases to be managed in any number of workspaces up to the limit on database connects
allowed by Progress itself.

6.6.1 Domains
Both table and field domains are supported by Roundtable.

The idea behind a domain is that you create a single definition that is used in a number of
different places. For example, you can define a single PFIELD object called Address and use
this field definition in a number of different tables, or even many times in the same table. Each
use of the field definition is a field assignment. This assignment establishes a field in the table
with name and order specified in the assignment. This can be advantageous when you need to
change some attribute of the field definition. You can make the change in a single place, and
Roundtable makes sure that all of the tables that use the field definition are updated properly.
This ensures consistency in your application and reduces the time spent on database
maintenance.

Table domains are similar to field domains except that you are assigning a table definition

Objects

 6-15

(PFILE object) to two or more databases. Any change to the table definition is updated in each
database by Roundtable. There is a limitation in the current release of Roundtable that
precludes the assignment of a PFILE to two or more tables in the same PDBASE. It is possible
to assign the same PFILE to two or more tables if these tables belong to different PDBASE
objects.

6.6.2 Schema Object Versions
Schema objects are versioned like other objects in the Roundtable system. However, some
differences do exist. Schema objects, PDBASE, PFILE, and PFIELD, are not stored as
incremental versions. A complete copy of the data structure defining the schema object is
stored in the repository for each version of the object. This does not lead to excessive growth
in the database because creating a new object version of a PFIELD does not necessarily
require new object versions of the PFILEs to which it may be assigned.

In addition, Roundtable maintains internal buffers for checked out schema objects to track the
last updated content of the schema objects. In this way, it can track the changes you make to
schema objects while they are WIP. You do not have to check in (complete) your schema
objects with each schema update process. Instead, you can make changes and update the
schema into your application database in an iterative manner. You only check in the schema
objects when you have finalized the database schema content.

It is usually a good idea to do your schema changes in a separate task from that used for
creating and modifying programs. It is necessary to complete all schema objects before a
release can be created in a workspace.

6.7 PDBASE Objects
PDBASE (database) objects record a list of PFILE assignments that link a PFILE with the
PDBASE object. When a PDBASE object is assigned to a workspace, additional information
is required to allow connection of the physical database. This connection information is part of
the assignment of the object to the workspace. It is not part of the PDBASE object. It is
possible to change this database connection information without checking out the PDBASE
object. The connection information for a database is contained in the Dbase folder.

There are two things to be aware of when creating a PDBASE object:

• Naming a PDBASE object is important because Roundtable uses the PDBASE object
name as the logical database name. Roundtable requires this for cross-referencing
purposes.

• Unless you specify -U and -P connection parameters for the database, Roundtable uses the
same user ID and password for the workspace database as you used for logging into

Roundtable User's Guide

 6-16

Roundtable. To avoid this, use -U “” -P “” as part of your workspace database’s
connection parameters.

6.7.1 Dbase folder Description
The Dbase folder contains the workspace database parameters of the PDBASE object.

The Dbase folder contains the following fields:

Field or Button Description

Connect Order A fill-in that controls the order in which Roundtable connects to
multiple databases.

DB Type (Display only) Type of database (PROGRESS, ORACLE, ODBC,
etc.)

DataServer DB Checked if the database is a DataServer schema holder. Only
enabled for a new PDBASE object.

Physical Name A fill-in for the full name of the database, including the directory
in which it is stored. If you leave this field blank, Roundtable does
not attempt to connect to the database when the workspace is
connected.

Parameters A set of fill-in fields for the Progress connection parameters. When
connecting to an application database, Roundtable supplies the
user ID and password you used to log into Roundtable. To avoid
this, you specify a user ID and password using the -U and -P
options. It is possible to pass a blank user ID and password with a
connection parameter specification of -U "" -P "".

Aliases Sets up database aliases.

Objects

 6-17

Field or Button Description

Sequences Creates and manages database sequences. See the "Adding a
Database Sequence" section in this chapter.

6.7.2 Adding a PDBASE Object
Before you add a PDBASE object, the database should exist in the system and be available for
connection. A connect is attempted during the PDBASE object add process to verify the
database connection parameters you enter.

Follow these steps to add a PDBASE object:

1. Choose File→New Object from the Tabletop menu. The New Object window appears.

2. Select PDBASE from the Type drop-down-list.

3. From the Pmodule drop-down list, select the Product Module to which the object will
belong. Only Product Modules that are associated with the currently selected Workspace
Module appear in the list.

4. Enter the object group and level in the Group and Level fields.

5. Enter an object name in the Object field. The object name that you enter for the new
PDBASE object will be used as the logical database name when it Roundtable connects to
it.

6. Choose the Save Record () button. The following dialog box appears with the object
name that you entered:

7. Choose Yes if the object name that you entered is the correct logical name for the

database. A warning dialog box appears to confirm creation of the new PDBASE object.

8. Choose Yes to create the PDBASE object.

9. Open the Object Properties window.

10. On the Dbase folder of the Object Properties window, enter the connect order priority
number, DataServer DB status, the physical name of the database, and the database
connection parameters.

Roundtable User's Guide

 6-18

11. Choose the Save Record () button to complete your edit of the folder.

6.7.3 PDBASE for DataServer Database
In order to utilize DataServer schemas with Roundtable, PDBASE objects must be defined in
specific ways. First, there must be a PDBASE object defined for each database with its
schema managed by Roundtable. This is the case, even if one physical Progress database
contains schemas for more than one database (such as both its own native schema and the
schema of foreign database).

Second, the name of the PDBASE object must be identical to the name of the database used to
manage the schema. If the PDBASE object corresponds to a foreign database, the name of the
PDBASE object must be the same as the name of the foreign database as it was when it was
connected to populate the DataServer schema holder database (stored in the _Db-name field
of the corresponding _Db record). The physical database specified for these objects, however,
will be the name of the Progress database that serves as the schema holder for the foreign
database. If the PDBASE corresponds to a native Progress schema, the PDBASE name will
serve as the logical name for that database (unless an -ld value is supplied in the connection
parameters for that PDBASE object).

Consider the following sample PDBASE object definitions:

PDBASE definition for ORACLE DataServer schema holder and database. Notice that
the physical name specified is for the Progress schema holder. A connection to the
ORACLE database is made using the additional connection parameters supplied in the
definition (See the Progress Oracle DataServer Guide for appropriate connection
parameters).
Property Value Description
Object
Name

ORCL Name of ORACLE
database.

Physical
Name

C:/rtb/project/devel/orahold.d
b

Pathname of Progress
schema holder.

Connection
Parameters

-ld orahold
-RO
-db ORCL -dt ORACLE
-U user_1@ORACLE.SERVICE.NAME
-P passwd

Logical name for schema
holder.

Connection parameters
for ORACLE database.

Objects

 6-19

PDBASE definition for ODBC DataServer schema holder and database. Notice that the
physical name specified is for the Progress schema holder. A connection to the ODBC
database is made using the additional connection parameters supplied in the definition (See
the Progress ODBC DataServer Guide for appropriate connection parameters, and DSN
setup).
Property Value Description
Object Name MS-Demo Name of ODBC

database.
Physical Name C:/rtb/demo/devel/demohold.db Pathname of Progress

schema holder.
Connection
Parameters

-ld demohold
-RO
-db MS-Demo -dt ODBC

Logical name for
schema holder.
Connection parameters
for ODBC database.

PDBASE definitions for Progress a database used for both native schema and as a
DataServer schema holder for an ORACLE database. The first PDBASE definition is for
the native schema, and the second for the ORACLE database. Note the read-only (-RO)
parameter in the second definition. Without this, you will get an error message when
Roundtable attempts a second connection to a single database.
Property Value Description
Object Name Prodemo Name of Progress

database.
Physical Name /usr/rtb/demo/devel/prodemo.db Pathname of Progress

database.
Connection
Parameters

Only as required per
installation.

Property Value Description
Object Name Orademo Name of ORACLE

database.
Physical Name /usr.rtb/demo/devel/prodemo.db Same pathname as

before.
Connection
Parameters

-RO
-db orademo -dt ORACLE
-U user_1@ORACLE.SERVICE.NAME
-P passwd

Required.
Connection parameters
for ORACLE database.

6.7.4 DataServer Schema Change Restrictions
Since Progress DataServer schema holders are designed to be only recipients of foreign
schema (using utilities provided in the Progress Data Administration tool), Roundtable also
limits one-way update of DataServer schema. This allows you to load in the schema changes
from a Progress schema holder for impact analysis and selective compiling. The Load

Roundtable User's Guide

 6-20

Schema utility finds any change to the physical schema holder and reads it into Roundtable
(versioning objects if necessary).

Schema for a DataServer database can only be added and/or updated in Roundtable using
Roundtable's Load Schema feature. Schema assigned to a PDBASE object that corresponds to
a DataServer database cannot be manually checked out, nor can a user directly modify the
properties of the objects.

As with loading native Progress schema using the Load Schema feature, schema objects for
DataServer schema will be checked out automatically as required. Even though schema
objects assigned to a PDBASE object corresponding to a DataServer database remain WIP
until they are checked in, users will not be able to change any of the properties (local table
name, data type, etc.) for these objects.

NOTE: Roundtable does not support the use of a DataServer for the Roundtable repository.

6.7.5 Editing the Dbase folder
Follow these steps to edit the Dbase folder:

1. From the object browse on the Tabletop, select the PDBASE object to edit.

2. Open the Object Properties window, and then choose the Dbase folder tab. The Dbase
folder opens.

3. Edit the database parameters in the folder as necessary. Since the Dbase folder only
contains workspace-specific connection parameters for the database, you can edit the
contents of the folder even if the PDBASE object is not checked out.

4. Choose the Save Record () button to complete your edit of the folder.

6.7.6 Adding an Alias
The database aliases defined for the database are created for you when Roundtable connects to
the database. Otherwise, code that expects these aliases to be available cannot compile.
Roundtable does not provide automatic alias support on deployment. Instead, your deployed
application will connect to the appropriate databases and create the required aliases.

Follow these steps to add an alias:

1. From the object browse on the Tabletop, select the PDBASE object that you want to add
an alias to. The PDBASE object must be checked-out to add an alias.

2. Open the Object Properties window, and then choose the Dbase folder tab. The Dbase
folder opens.

3. Choose the Aliases button. The Aliases dialog box appears.

Objects

 6-21

4. Choose the Add Record () button. A new row is enabled in the browse.

5. Enter the alias name and choose the Save Record () button.

6. Repeat steps 5-7 for additional aliases.

7. Close the Alias dialog box.

6.7.7 Deleting an Alias
Follow these steps to delete an alias:

1. From the object browse on the Tabletop, select the PDBASE object that you want to add
an alias to. The PDBASE object must be checked-out to add an alias.

2. Open the Object Properties window, and then choose the Dbase folder tab. The Dbase
folder opens.

3. Choose the Aliases button. The Aliases dialog box appears.

4. Select the alias you want to delete.

5. Choose the Delete Record () button. A warning dialog box appears. Choose the Yes
button to delete the alias.

6. Close the Alias dialog box.

6.7.8 Adding a Database Sequence
Follow these steps to add a database sequence:

1. From the object browse on the Tabletop, select the PDBASE object that you want to add
a sequence to. The PDBASE object must be checked-out to add a sequence.

2. Open the Object Properties window, and then choose the Dbase folder tab. The Dbase
folder opens.

3. Choose the Sequences button. The Database Sequences dialog box appears.

Roundtable User's Guide

 6-22

4. Choose the Add Record () button. The Name field is enabled in the Sequence Details
panel.

5. Enter the name for the sequence along, with these values for the new sequence:

• Initial: The first number to use when assigning numbers.

• Maximum: The highest number to assign before stopping or starting over.

• Increment: The amount by which to increment each consecutive number.

• Minimum: The lowest number that Progress should use when assigning numbers and is
only used with negative increments.

• Cycle: Check here to have Progress start over assigning numbers once the maximum
number is reached.

6. Choose the Save Record () button to complete your new sequence entry.

7. Close the dialog box.

6.7.9 Edit a Database Sequence
Follow these steps to edit a database sequence:

1. From the object browse on the Tabletop, select the PDBASE object that you want to edit
a sequence for. The PDBASE object must be checked-out to edit sequences.

2. Open the Object Properties window, and then choose the Dbase folder tab. The Dbase
folder opens.

3. Choose the Sequences button. The Database Sequences dialog box appears.

Objects

 6-23

4. Select the sequence to edit from the browse. Edit the sequence fields as necessary. On

your first change to any of these fields, the Save Record () and Reset () buttons

are enabled. Choose the Save Record () button to complete your edit.

5. Close the dialog box.

6.7.10 Delete a Database Sequence
Follow these steps to delete a database sequence:

1. From the object browse on the Tabletop, select the PDBASE object that you want to edit
a sequence for. The PDBASE object must be checked-out to edit sequences.

2. Open the Object Properties window, and then choose the Dbase folder tab. The Dbase
folder opens.

3. Choose the Sequences button. The Database Sequences dialog box appears.

4. Select the sequence to delete from the browse.

5. Choose the Delete Record () button. A warning dialog box appears. Choose the Yes
button to delete the sequence.

6. Close the dialog box.

6.7.11 Load Progress Schema
The Load Progress Schema utility loads the schema of an existing database into Roundtable.
The utility creates PFILE and PFIELD objects for each of the file and field definitions found
in the Progress database. The Utility can load changes made to the Progress database schema
so that the logical schema object definitions in Roundtable are brought in sync with the
physical Progress database schema.

See the "Load Schema" section in Chapter 7 for a complete description of this utility.

6.7.12 PDBASE Object Report
The PDBASE Object Report reports the definition of a PDBASE object. It does not report on
the definitions of the PFILE assigned to the PDBASE. If you want a complete schema
definition, use the Database Definition Report instead. See the "Database Definition Report"
section in this chapter.

Follow these steps to print the report:

1. From the object browse on the Tabletop, select the PDBASE object to report on.

Roundtable User's Guide

 6-24

2. Choose Reports→Object→PDBASE Object Report from the Tabletop menu. The
PDBASE Object Report window appears.

3. Confirm or modify the report selections, and then choose the OK button.

6.7.13 Database Definition Report
The Database Definition Report provides the full definition of the database from the contents
of the Roundtable schema.

Follow these steps to print the report:

1. From the object browse on the Tabletop, select the PDBASE object to report on.

2. Choose Reports→Object→Database Definition Report from the Tabletop menu. The
Database Definition Report window appears.

3. Select report options:

Activate the Provide Brief Field List toggle box to print brief field descriptions for the
fields defined in each table.

Activate the Print Field Definitions toggle box to print the full detailed definition of each
field.

The Brief Field List and Field Definitions options are not mutually exclusive. The report
produces both sections if both options are selected.

Objects

 6-25

4. Choose the OK button to run the report.

6.7.14 Integrity Check Report
The Database Integrity Check Report compares the Roundtable schema definition with the
schema definition in the physical Progress database. This report is useful for finding out if
someone has modified the Progress database schema manually.

Follow these steps to print the report:

1. From the object browse on the Tabletop, select the PDBASE object to report on.

2. Choose Reports→Object→Database Integrity Check Report from the Tabletop menu.
The DB Integrity Check Report window appears.

3. Confirm the PDBASE specification and then choose the OK button to print the report.

6.8 PFILE Objects
A PFILE object defines the contents of a Progress table. It contains:

• Schema information related to the table as a whole

• Index and table header definitions for the table

• A list of PFIELD assignments that include local field names, field order, and mandatory
status

Define the fields of a table through assignment of existing PFIELD objects to the PFILE
object. In addition to the contents of the PFIELD definition, table fields are further defined by
a local field name, a field order, and mandatory status values. The table field name and the
PFIELD object name are usually (but do not have to be) the same.

Roundtable shows the content of a PFILE object definition in the Table folder. You perform
the following activities to manage a PFILE object:

• Assign PFIELD objects to the PFILE

• Define indices and index fields for the PFILE

• Define PFILE triggers

The PFILE reports available are:

Roundtable User's Guide

 6-26

• PFILE Object Report, which provides the definition of a PFILE object

• File Definition Report, which provides the full PFILE definition

6.8.1 Table Folder Description
The Table folder contains a PFILE object definition.

The File folder contains the following items:

Field or Button Description

Label The fill-ins for the label of the table and its string attribute.

String Attribute
(Unlabeled)

A fill-in for the string attribute for the Label.

Dump name A fill-in for the dump name of the table.

Replication A fill-in for the Replication table attribute. This field was added to
the Progress data dictionary in version 8.1A. See the Progress
System Administration Guide for more details.

Frozen A toggle box that sets the Progress File _frozen attribute.
Roundtable can update files that have the Frozen attribute set. Use
this attribute to prevent others from making changes to the file
using the Progress Data Dictionary.

Hidden A toggle box that sets the Progress File _hidden attribute. Use this
attribute to prevent users from seeing this table.

Desc. An editor widget for the description of the table's use in the system.

Objects

 6-27

Field or Button Description

Record Deletion
Validation

An editor widget for the statement that must be true before deleting
a record.

Validation Failure
Message

An editor widget for the message Progress displays if a record
deletion validation fails. Also enter String Attributes.

String Attribute
(Unlabeled)

A fill-in for the string attribute for the Validation Failure Message.

Triggers Button to define database triggers for the table.

6.8.2 Adding a PFILE Object
Follow these steps to add a PFILE object:

1. Choose File→New Object from the Tabletop menu. The New Object window appears.

2. Select PFILE from the Type drop-down-list.

3. From the Pmodule drop-down list, select the Product Module to which the object will
belong. Only Product Modules that are associated with the currently selected Workspace
Module appear in the list.

4. Enter the object group and level in the Group and Level fields.

5. Enter an object name in the Object field.

6. Choose the Save Record () button.

7. A dialog appears with the new object details for confirmation.

8. Choose the Yes button to create the PFILE object.

For instructions on adding fields to the table, see the "Adding a Field" section in this chapter.

6.8.3 Editing the Table Folder
Follow these steps to edit the Table folder:

1. From the object browse, select a PFILE object that has a WIP status.

2. Open the Object Properties window, and then select the Table folder tab.

3. Edit the fields in the folder as desired.

4. Choose the Save Record () button to save your changes.

Roundtable User's Guide

 6-28

6.8.4 Adding Table Triggers
Roundtable allows you to manage database table triggers. For a description of database
triggers, refer to your Progress manuals.

NOTE: Roundtable does not support CRCs on triggers because it makes deployment of
schema information difficult or impossible in many situations. See the PROGRESS
documentation for more information on CRC checks on triggers.

Follow these steps to add a table trigger:

1. From the object browse, select a PFILE object that is checked out.

2. Open the Object Properties window, and then choose the Table folder tab.

3. Choose the Triggers button. The Triggers for Table dialog box appears.

4. Choose the Add Record () button.

5. Select the trigger event from the Event drop-down list.

6. Enter the name of the procedure associated with the event.

7. Activate the Override toggle box if the application code can override this trigger

specification. Choose the Save Record () button to complete trigger entry

8. Close the dialog box.

6.8.5 Deleting a Trigger
Follow these steps to delete a table trigger:

1. From the object browse on the Tabletop, select a PFILE object that is checked out.

2. Choose the Table folder tab. The Table folder opens.

3. Choose Triggers from the pop-up menu. The Triggers for Table dialog box appears.

Objects

 6-29

4. Select the trigger event from the browse.

5. Choose the Delete Record () button. A warning dialog appears to confirm the
deletion.

6. Choose the Yes button to delete the trigger. The trigger record is deleted, but Roundtable
does not delete the procedure source code.

7. Close the dialog box.

6.8.6 PFILE Object Report
The PFILE Object Report prints the definition of a selected PFILE object.

Follow these steps to print the report:

1. From the object browse on the Tabletop, select the PFILE object.

2. Choose Reports→Object→PFILE Object Report from the Tabletop menu. The PFILE
Object Report window appears.

3. Confirm or modify the object specifications, and then choose the OK button.

Roundtable User's Guide

 6-30

6.8.7 Table Definition Report
The Table Definition Report prints a full file definition from the contents of Roundtable
schema.

Follow these steps to print the report:

1. From the object browse on the Tabletop, select the PFILE object.

2. Choose the Reports→Object→Table Definition Report from the Tabletop menu. The
Table Definition Report window appears.

3. Confirm or modify the object specifications, and select from the report options:

• Activate the Print Brief Field List toggle box to print a brief list of all the fields in the
file.

• Activate the Provide Full Detail toggle box to print the full details of each field in the
file.

The Brief List and Full Detail options are not mutually exclusive. The report produces
both sections if both options are selected.

4. Choose the OK button.

6.9 PFIELD Objects
PFIELD definitions in Roundtable are similar to the field definitions found in the Progress
Data Dictionary. However, unlike Progress field definitions, PFIELD objects can be used in
one or more field assignments in PFILE table definitions.

For example, you can define a single PFIELD object called Address and assign this definition
to one or more PFILE table fields. This allows for global changes, such as changing the length
of the Address field. You make only one change in the PFIELD definition. Roundtable
updates the table's field definition wherever a field is assigned to a table.

Objects

 6-31

6.9.1 Field Folder Description
The Field folder contains the PFIELD definition. You can change most of the fields in this
folder, except the data type or extent of the field. To change the data type or extent of a field,
see the "Changing the Data Type or Extent of a Field" section in this chapter. You can change
the decimal field only if the field is a decimal data type.

The fields in the Field folder include:

Field Description

Type Display only field. This shows field’s data type.

Extent Display only field. Defines the number of elements in an
array field.

Decimal Display only field. Indicates the number of stored
decimal digits for a decimal field.

Case Sensitive A toggle box that indicates whether to regard uppercase
and lowercase letters as differences in a field.

Label Fill-ins for the field label and string attribute.

Col-label Fill-ins for the column label and string attribute.

Format Fill-ins for the format phrase for the field and string
attribute.

Initial Fill-in for the initial value of the field and string attribute.

Help Fill-ins for the field's help line and string attributes.

Roundtable User's Guide

 6-32

Field Description

SQL Width Field width for SQL-92 clients.

Desc. An editor widget for the field's description.

View As The View As expression for the field.

Validation The validation expression for the field.

Val Msg The validation message and string attribute for the field.

6.9.2 Adding a PFIELD Object
Follow these steps to add a PFIELD object:

1. Choose File→New Object from the Tabletop menu. The New Object window appears.

2. Select PFIELD from the Type drop-down list.

3. From the Pmodule drop-down list, select the Product Module to which the new PFIELD
object belongs. Only Product Modules associated with the current Workspace Module
appear in the list.

4. Enter the object group, level, object name, data type and extent.

5. Choose the Save Record () button. A warning dialog appears to confirm the object
creation.

6. Choose the OK button to complete the addition of the PFIELD object. The new PFIELD
object appears on the Tabletop’s object browse.

7. Close the New Object window if you have no more PFIELDs to add.

Objects

 6-33

6.9.3 Editing the Field Folder
Follow these steps to edit the Field folder:

1. From the object browse, select a PFIELD object that is checked out.

2. Open the Object Properties window, and then choose the Field folder tab. The Field
folder opens.

3. Edit the folder as desired. Choose the Save Record () button to complete your entry in
the folder.

6.9.4 Changing the Data Type or Extent of a Field
The PFIELD must be checked-out in order to be modified. If you have used the field in an
index, you cannot change the extent of the field.

NOTE: Changing the data type or extent of a field might cause loss of data in your application
database. Roundtable does provide a mechanism for transforming the data from one
type to another during the schema update process, but you often have to write your
own data conversion routines. See the "Database Schema Updates" section in
Chapter 4.

Follow these steps to change the data type or extent of a field.

1. From the object browse on the Tabletop, select a PFIELD object.

2. Open the Object Properties window, and then choose the Field folder tab. The Field
folder opens.

3. Change the data type and/or extent of the field, as desired.

4. Choose the Save Record () button to complete the data type and extent change.

6.9.5 Editing a Field Validation
A field validation is an expression that must be true before you can leave the field. The
PFIELD object must be checked out for its validation to be changed:

Follow these steps to edit a field validation:

1. From the object browse on the Tabletop, select a PFIELD object.

2. Open the Object Properties window, and then choose the Field folder tab. The Field
folder opens.

3. Edit the validation expression and message as desired.

4. Choose the Save Record () button to complete your changes.

Roundtable User's Guide

 6-34

6.9.6 Editing a Field View As Phrase
The View As phrase provides a default expression used to display the field as a GUI widget.

Follow these steps to edit a view-as phrase:

1. From the object browse on the Tabletop, select a PFIELD object.

2. Open the Object Properties window, and then choose the Field folder tab. The Field
folder opens.

3. Edit the view-as phrase as desired.

4. Choose the Save Record () button to complete your changes.

6.9.7 PFIELD Object Report
The PFIELD Object Report prints the field definition information for a selected field.

Follow these steps to print the report:

1. From the object browse on the Tabletop, select the PFIELD object.

2. Choose Reports→Object→PFIELD Object Report from the Tabletop menu. The PFIELD
Object Report window appears.

3. Confirm or modify the object specification, and then choose the OK button.

6.10 Logical Schema Manager Window
In order to apply the definitions provided by PDBASE, PFILE, and PFIELD objects to a
physical Workspace database, the objects must be assembled into a logical database schema.
Logical database schemas are constructed using the Logical Schema Manager window.

Objects

 6-35

The following items are on the Logical Schema Manager window:

Item Description

A hierarchical tree showing databases, tables, fields and indices that
form a database schema. Database schemas are represented with the
following icons:

 Root node. Represents all PDBASE objects in the selected
Workspace.

 Workspace database. The label displays the logical database
name. Expand to view tables assigned to the database.

 Table assigned to the database. The node label displays the local
table name with the PFILE object name in parentheses. Expand
to view assigned fields and defined indices.

 Field assigned to a table. The node label displays the local field
name with the PFIELD object name in parenthesis.

TreeView

 Index defined for a table.

Roundtable User's Guide

 6-36

Item Description

File folder Manages the assignment of a PFILE objects to a PDBASE object.

Field folder Manages the assignment of PFIELD objects to a PFILE object.

Index folder Manages the definition of indices for a PFILE object.

The nodes of the Logical Schema Manager TreeView are expanded, collapsed and selected as
in similar applications, such as Windows Explorer.

6.10.1 Table Assignment
Follow these steps to add tables to a database by assigning an existing PFILE object to the
database:

1. Choose Workspace→Schema Manager from the Tabletop menu. The Logical Schema
Manager window opens.

2. In the Logical Schema Manager TreeView, choose the Database that you want to assign a
table to.

NOTE: The PDBASE object associated with the database must be checked-out to your
current task.

3. Choose the File folder tab. The File folder appears.

4. Choose the Add Record () button on the File folder’s toolbar. The Assign PFILE to
PDBASE dialog box appears.

5. Select the PFILE to assign and choose the OK button. The cursor is positioned to the

Local Table Name field on the File folder.

Objects

 6-37

6. Enter the local table name, and then choose the Save Record () button.

The name that you enter will be the name of the table in the physical database schema.

6.10.2 Deleting a Table Assignment
You can delete a table from your database by removing the PFILE assignment that defines the
table. Deleting the PFILE assignment does not delete the PFILE object.

Follow these steps to delete a table:

1. Choose Workspace→Schema Manager from the Tabletop menu. The Logical Schema
Manager window opens.

2. In the Logical Schema Manager TreeView, select the table that you want to remove.

NOTE: The PDBASE object associated with the database must be checked-out to your
current task.

3. Choose the File folder tab. The File folder appears.

4. Choose the Delete Record () button on the File folder’s toolbar. A warning dialog box
appears.

5. Choose the Yes button to remove the table assignment. Roundtable deletes the table from
the database but does not delete the associated PFILE object.

6.10.3 Changing Local Table Name
The local table name is the name of the table seen in the Progress database. When you assign a
PFILE object to a PDBASE object to create a table, you specify the local table name.

To change the local table name of a PFILE assigned to a PDBASE follow these steps:

1. Choose Workspace→Schema Manager from the Tabletop menu. The Logical Schema
Manager window opens.

2. In the Logical Schema Manager TreeView, select the table that you want to rename.

NOTE: The associated PFILE object must be checked-out to your current task.

3. Choose the File folder tab. The File folder appears.

4. Enter the new Local Table Name in the field provided.

5. Choose the Save Record () button to save your change.

Roundtable User's Guide

 6-38

6.10.4 Field Assignments
A table is comprised of one or more fields. Define these fields by assigning PFIELD objects to
the PFILE object that defines the table. To see the fields in a table, expand the Table’s node in
the Logical Schema Manager’s TreeView. If the PFILE object is checked out, you can create,
edit, or delete PFIELD object assignments to change the field definitions of the table.

The details of field assignments are shown on the Field folder of the Logical Schema Manager
window.

Field Description

PFIELD Object A fill-in for the name of the PFIELD object definition.

Local Field Name A fill-in for the name of the field in the file. The local field name
may be different than the name of the PFIELD object. For example,
the PFIELD object name may be customer.name while the local
field name is "name".

Order A fill-in for the field ordering value.

Mandatory A toggle box that indicates whether this field is required.

Trigger Procedure A fill-in for the name of a field trigger procedure.

Objects

 6-39

Field Description

Overridable A toggle box that indicates whether applications using the database
can override the specified field trigger.

6.10.5 Assigning a Field
You can add fields to the table by assigning an existing PFIELD definition. The PFILE object
must be checked out for new fields to be added.

Follow these steps to assign an existing PFIELD object:

1. Choose Workspace→Schema Manager from the Tabletop menu. The Logical Schema
Manager window opens.

2. In the Logical Schema Manager TreeView, select the table that you want to assign a field
to.

NOTE: The associated PFILE object must be checked-out to your current task

3. Choose the Field folder tab. The Field folder appears.

4. Choose the Add Record () button on the toolbar beneath the PFIELD to PFILE
Assignment panel. The Assign PFIELD to PFILE dialog appears.

5. Select the PFIELD object to assign to the PFILE object, and then choose the OK button.

6. Supply the appropriate Local Field Name, Order, and Mandatory data on the Field folder.

7. Choose the Save Record () button to complete the field assignment.

6.10.6 Editing a Field Assignment
Follow these steps to edit a PFIELD assignment:

Roundtable User's Guide

 6-40

1. Choose Workspace→Schema Manager from the Tabletop menu. The Logical Schema
Manager window opens.

2. In the Logical Schema Manager TreeView, select the field that you want to edit.

NOTE: The associated PFIELD object must be checked-out to your current task.

3. Edit the Field folder data as necessary.

4. Choose the Save Record () button to complete the field assignment changes.

6.10.7 Deleting a Field Assignment
When you delete a PFIELD assignment from a PFILE object, you are not deleting the PFIELD
object from the workspace, only its assignment to the PFILE.

Follow these steps to delete a PFIELD assignment.

1. Choose Workspace→Schema Manager from the Tabletop menu. The Logical Schema
Manager window opens.

2. In the Logical Schema Manager TreeView, select the field that you want to delete.

NOTE: The PFILE object for the associated table must be checked-out to your current
task.

3. Choose the Delete Record () button on the toolbar beneath the PFIELD Assignment to
PFILE panel on the Field folder. A warning dialog box appears. Choose the Yes button to
delete the field assignment.

6.10.8 Indices
A table can have multiple indices. Define these indices through the Index folder. To see the
indices in the table, open the Logical Schema Manager window, and then expand the
associated table node in the TreeView. If the PFILE object is checked out, you can create, edit
or delete indices for the table.

Objects

 6-41

Field Description

Name A fill-in for the name of the index.

Desc An editor widget for the description of the index.

Active A toggle box that indicates the Active status of the index. This
allows you to deactivate the indices on the table during an
update schema process. Note that you would then need to
manually re-index. See "Toggle Index" for more information

Unique A toggle box that indicates whether duplicate keys are
allowed.

Word Index A toggle box that indicates whether the index is to be a word
index.

Primary Index A toggle box that indicates that the index is the primary index
for the table.

Roundtable User's Guide

 6-42

Field Description

Abbrev Index A toggle box that indicates whether the last description field
can be abbreviated.

Fields in index
(unlabeled)

A table that displays the fields in the index. Each index must
have at least one field.

6.10.9 Adding an Index
Follow these steps to add an index:

1. Choose Workspace→Schema Manager from the Tabletop menu. The Logical Schema
Manager window opens.

2. In the Logical Schema Manager TreeView, select the table that you want to add an index
to.

NOTE: The associated PFILE object must be checked-out to your current task.

3. Choose the Index folder tab. The Index folder appears.

4. Choose the Add Record () button on the toolbar beneath Index Info panel.

5. Edit the Index Info to define the new index.

6. Choose the Save Record () button. You can now add fields to the new index.

7. Choose the Add Record () button on the toolbar beneath the index fields browse on
the lower portion of the Index folder. A new row appears in the index fields browse.

8. Verify or edit the field sequence number, then position the cursor to Field column

9. Type in the local field name of the field to be added to the index.

10. Choose the Save Record () button to complete the field addition.

11. Repeat steps 7-10 for each field to be added to the index.

12. Choose the Commit () button to complete the index addition.

6.10.10 Deleting an Index
Follow these steps to delete an index.

1. Choose Workspace→Schema Manager from the Tabletop menu. The Logical Schema
Manager window opens.

2. In the Logical Schema Manager TreeView, select the index that you want to delete.

Objects

 6-43

NOTE: The PFILE object for the associated table must be checked-out to your current
task.

3. Choose the Delete Record () button on the toolbar beneath Index Info panel. A
warning dialog box appears to confirm the index deletion.

4. Choose the Yes button to delete the index.

6.10.11 Renaming an Index
Follow these steps to rename an index:

1. Choose Workspace→Schema Manager from the Tabletop menu. The Logical Schema
Manager window opens.

2. In the Logical Schema Manager TreeView, select the index that you want to rename.

NOTE: The PFILE object for the associated table must be checked-out to your current
task.

3. Enter a new index name in the Index Info panel on the Index folder.

4. Choose the Save Record () button to complete your index rename.

6.11 Assigning an Object
The assign process allows you to extract any completed version of any object from the
Roundtable repository and assign it to the current workspace. It becomes available in the
Workspace Module that is associated with the Product Module to which the object belongs. If
the object already exists in the workspace, the current object version is overwritten by the
newly assigned object version.

Follow these steps to assign an object version to the current workspace:

1. Choose File→Assign Object from the Tabletop menu. The Assign Object dialog box
appears.

Roundtable User's Guide

 6-44

2. Fill in the values in the dialog box to specify the object version to assign.

3. To lookup an object, choose the Search button. The Object Lookup dialog box appears.

As you type in the Object field, the Objects list shows objects matching your entry.
Highlight the object you want then choose the Select button.

4. From the Version drop-down list on the Assign Object dialog, select the version number
of the object to assign.

5. Choose the Assign button to complete the assignment. Roundtable assigns the selected
object to the workspace.

6.12 Object Reports
There are a number of reports you can access to provide information on the objects managed
by Roundtable. The available reports include:

• Version in Product Module Report: Shows the history of the development of object
versions for the currently selected object in specified Product Module.

• Version in Workspace Report: Shows the history of the development of object versions
for the currently selected object in specified Workspace.

• Cross-reference reports, including:

� Xref Report: Shows what other objects the selected object uses.

� Where Used Report: Shows where a selected object is used in the system.

� Object Usage Report: Provides a diagram of the call sequences to a selected
program.

� Call Diagram Report: Provides a diagram of the calls between the programs in your
system.

Objects

 6-45

� Unused Object Report: Shows the registered objects in your system that aren't
being used by other objects.

� External Objects Report: Shows the objects that are referenced by objects in the
workspace, but aren't defined in the workspace as objects.

• Index Usage Report: Provides a list of all programs that use a specified table index.

• Informal Xref: Provides a list of each object that uses a specified informal object.
Informal objects include shared variables, shared workfiles, etc.

• Repository Check Report: Examines the RTB repository database looking for
errors and other possible problems. This is a lengthy process. Three areas can be
checked: repository records against object version records, links between repository
records, and the repository for empty object versions.

6.12.1 Versions in Product Module Report
The Versions in Product Module Report provides a history of the development of an object’s
versions for a selected Product Module. This report helps to identify and integrate changes
made to an object in different workspaces.

The report provides:

• Object

• Versions of the object

• Status of the object

• Notes

6.12.2 Versions in Product Module Report Window
The Versions in Product Module Report window identifies the scope of the report.

Roundtable User's Guide

 6-46

Field Description

Product Module A drop-down list to select the Product Module.

Object type A drop-down list from which you select the type of
object.

Object Enter the name of the object.

Lowest Version Enter the starting version.

Highest Version Enter the ending version.

Max Versions Enter the maximum number of versions printed. This
prevents excessive numbers of versions from being
printed when you are not sure how many versions
exist across the version range specified.

Show Orphans A toggle box to print orphans. Orphans exist when
you create a version of an object based on a version
that is not the most recent version in the repository.

Show Object Descriptions A toggle box to print full details for each object.

Show Version Notes A toggle box to print the history notes for the object.

Objects

 6-47

6.12.3 Printing the Versions in Product Module Report
Follow these steps to print the Version Ancestry Report:

1. Choose Reports→Object→Versions in Product Module Report from the Tabletop menu.
The Report window appears.

2. Enter report criteria, and then choose the OK button.

6.12.4 Versions in Workspace Report
1. The Versions in Workspace Report will display the version notes for all versions of an

object in any Product Module of the current workspace. This report shows the
development of an object across one or more Product Modules

The report provides:

• Object

• Versions of the object

• Product Module

• History Notes

6.12.5 Versions in Workspace Report Dialog Box Description
The Version Workspace Report dialog box allows user to identify object to examine.

Field Description

Object type A drop-down list to select the object type.

Object Enter object name.

Show Version Notes A toggle box to print the version notes for the object.

Roundtable User's Guide

 6-48

6.12.6 Printing the Versions in Workspace Report
Follow these steps to print the Versions in Workspace Report:

1. Choose Reports→Object→Versions in Workspace Report from the Tabletop menu. The
Report dialog box appears.

2. Enter report criteria into the dialog box fields. Choose the OK button.

6.12.7 Xref Report
The Xref Report prints the cross-references for the selected object. For example, to see all the
fields used in a PFILE object, print the Xref Report for that PFILE.

Follow these steps to print the Xref Report:

1. Choose Reports→Object→Xref Report from the Tabletop menu. The Xref Report dialog
box appears.

2. Enter the Product Module, type of object, and name of the object in the dialog box, and

then choose the OK button.

6.12.8 Where Used Report
The Where Used Report shows where a selected object is used in the system. For example, a
Name field might be used in a number of different tables, including an invoice table, a mailing
label table, etc.

Follow these steps to print the Where Used Report:

Objects

 6-49

1. Choose Reports→Object→Where Used Report from the Tabletop menu. The Where
Used Report dialog box appears.

2. Enter the report options in the dialog box, and then choose the OK button.

6.12.9 Object Usage Report
The Object Usage Report provides a diagram of the call sequences to a given program. This
report is used to:

• Find the call sequences that lead to a program or include a file's usage

• Find all of the programs that are passed through to reach the specified program

Use this report to ensure that shared buffers and variables are set in the programs that lead to
the specified program.

Follow these steps to print the Object Usage Report:

1. Choose Reports→Object→Object Usage Report from the Tabletop menu. The Object
Usage Report window appears.

2. Enter the report options in the window:

• Enter the name of the program or include file for which to run the report in the Lead
in Program field.

• Enter the maximum number of levels to include in the report in the Max Levels field.

• Enter the number of white spaces to use as indents for each level in the White Space
field.

Roundtable User's Guide

 6-50

• Activate the Extra line toggle box to double-space the report.

3. Choose the OK button.

6.12.10 Call Diagram Report
The Call Diagram Report provides a diagram of the calls to identified Lead in Program.

Follow these steps to print the Call Diagram Report:

1. Choose Reports→ Object→Call Diagram Report from the Tabletop menu. The Call
Diagram Report window appears.

2. Enter the report options in the window:

• Enter the name of the program or include file for which to run the report in the Lead
in Program field.

• Enter the maximum number of levels to include in the report in the Max Levels field.

• Enter the number of white spaces to use as indents for each level in the White Space
field.

• Activate the Extra line toggle box to double-space the report.

3. Choose the OK button.

6.12.11 Unused Objects Report
The Unused Objects Report provides a list of objects that are not referenced by any object in
the workspace. Use this report to track down code that is no longer used in the system.

Some objects that are no longer used in – but assigned to – the workspace appear on this
report. For example, a menu.p program might appear on this report, if it is the root program
for entering the system and is not referenced by other objects in the system.

Any objects that are only called via RUN VALUE() statements also appear in the report.

To print the Unused Objects Report:

Objects

 6-51

Choose Reports→Workspace→Unused Objects Report from the Tabletop menu.

6.12.12 External Objects Report
The External Objects Report identifies objects that are referenced in the workspace, but are
not defined in the workspace as objects.

To print the External Objects Report:
Choose Reports→Workspace→External Objects Report from the Tabletop menu.

6.12.13 Index Usage Report
The Index Usage Report shows where a selected index is used in the system.

Follow these steps to print the Index Usage Report:

1. Choose Reports→Workspace→Index Usage Report from the Tabletop menu. The Index
Usage Report window appears.

2. Select the tables and/or indices for the report. If you select multiple tables, all indices in

the tables will appear on the report. Selecting the Unused Index Summary toggle box
shows all unused indices in the system.

3. Choose the OK button.

6.12.14 Repository Check Report
The Repository Check Report is used to identify problems in the Roundtable repository
database. This process can evaluate four different areas:

Roundtable User's Guide

 6-52

• Check repository records against object version records

• Check links between repository records

• Check for empty object versions

• Check for missing full source object versions

Follow these steps to print the Repository Check Report:

1. Choose Tools→Repository Check Report from the Tabletop menu. The Repository
Check window appears.

2. Select the processes that you would like to be reported.

3. Choose the OK button.

4. Contact Roundtable Technical Support for assistance with any errors detected by this
report.

7
Tools

7.1 Introduction
This chapter documents a number of useful tools provided in the Roundtable environment.
These include:

• Group Check out: Search for and select objects for check out into a current task

• Compiling Tools: Compilation rules and utilities available in the system

• Module Load: Registers objects into Roundtable quickly

• Visual Difference: Compare different versions of file-based objects quickly

• Deploying Roundtable Objects to AppServer partitions and WebSpeed brokers using the
Server Upload tool.

Roundtable User's Guide

 7-2

7.2 Group Check out Utility
The group check out utility provides a flexible way of selecting numerous objects for a quick
check-out. Use workspace module and object group selection criteria to locate a specific
group of objects in the workspace, and then select one or more of the objects to be checked
out. Use either a group or individual check-out process to assign new version code values and
an initial update note.

The global change finder utility compares the source files of the objects in the selection list
with the image of those files in the repository. The objects whose files differ are selected from
the list automatically. This makes it easy to search for changes in the workspace that were
made outside of Roundtable's control and bring them under version control.

7.2.1 Group Check out Window
This section explains the various components of the Group Check out window that is available
from the Tools�Group Checkout menu option. The window has two folders: Object
Selection and Check-Out Options.

The following table lists the elements of the Object Selection folder:

Element Description

Module A drop-down list from which you select the
workspace module. Only objects belonging to the
specified module appear in the object browse list.
Use the Any value to include all of the workspace’s
modules.

Tools

 7-3

Element Description

Group A drop-down list from which you select the
workspace module group code. Only objects
belonging to the specified group appear in the object
browse list. Use the Any value to include all objects
in the selected module.

Object browse list This is a multiple-select browse list. Objects selected
from this browse list will be checked out when you
choose the Check Out button.

Select All A button that forces all of the objects in the object
browse list to be selected.

Select None A button that deselects any selected objects in the
object browse list.

Select Changed This button initiates the comparison of the files in the
workspace that belong to an object with the image of
those files stored in the repository. The objects
whose files differ are selected from the object browse
list automatically.

The Global Change Finder also finds any source files
that have been deleted. If any source files have been
deleted, Roundtable gives you the opportunity to
delete the corresponding object record from the
workspace.

Find This button allows you to reposition the object
browse list to an object with the name that you
specify.

Compare Invokes the configured visual diff application to
compare the repository and OS source for the
selected changed object.

Check Out Choose this button when you are ready to check out
the selected objects.

Close Closes the window.

Roundtable User's Guide

 7-4

The following table lists the elements of the Check-Out Options folder:

Element Description

Individually A radio button that indicates that each selected object
will be checked out individually. This allows you to
choose different version, revision, or patch-level
increments for each object.

As a Group A radio button that indicates that the selected objects
will be checked out as a group. All the objects are
checked out with the Increment Level and Version
Note specified.

Level A radio set that allows you to specify whether to
increment the version, revision, or patch level of each
object being checked out.

Version Note An editor widget for the version update note to attach
to each checked out object.

Move to A drop-down list that allows you to move selected
objects from one product module to another. Choose
<No Change> to simply check objects out without
moving them from one product module to another. If
you choose to move objects to a different product
module, then a new WIP version of the selected
object(s) will be created in the selected product
module. Increment Level is ignored if you choose to
move objects to a different product module.

7.2.2 Select Changed Button
The Tools�Group Checkout�Select Changed button runs the Global Change Finder
program. This initiates the comparison of the files in the workspace that belong to an object
with the image of those files stored in the repository. The objects whose files differ are
selected from the object browse list automatically.

7.3 Compiling Tools
Roundtable provides sophisticated tools for recompilation of procedure objects in your
workspace. In this section, you learn how to:

• Select a workspace

Tools

 7-5

• Compile a workspace or object

Roundtable provides three compile options:

• Compile and save

• Compile with Xrefs

• Selective compile

All the compile options follow the same set of rules and run the same compile process. The
compile process performs different actions based on:

• Current task

• Share status of an object

• Full compile flag

• Xref flag

The compile rules are discussed below. These rules are especially important to understand if
you are using the share status option. When you use a share status other than Central, two
copies of the same object exist, one in the workspace and one in the task directory. The object
in the workspace is the previously completed version and the object in the task directory is the
work-in-process version. For more information on the share status option, see the "Share
Status" section in Chapter 5.

7.3.1 Compiling Rules
All the compile options in Roundtable follow the same set of rules and call the same
compilation process. The compile actions taken on an object are governed by the following
values:

• Currently selected task

• Share status of the object

• R-code and s-code flags specified for the workspace or workspace module

• Full compile flag

• Xref flag

When the share status of an object is not Central, two copies of the objects source exit. One
copy is in the workspace directory structure and the other is in the task directory structure.
This makes the impact of some of the following rules rather subtle, so read them carefully:

1. Compilation of source in a task directory occurs only when the task owning the directory
is selected. In the case of the selective compile, the task number is specified in the
selective compile window. Compilation of source in a task directory is always done with

Roundtable User's Guide

 7-6

the PROPATH precedence of task directory, group directory, and then workspace
directory.

2. Compilation of source in workspace directories is always done with the PROPATH
including only workspace directories. Sources in task and group directories are never
included in the compilation of a source file in a workspace directory.

3. R-code is never generated for the source compiled in the task or group directories.

4. R-code can be generated for source compiled in a workspace directory based on the value
of the R-code value in the workspace and workspace module specifications and the Save?
value in the Object Config folder. If the Save value is No, then R-code is not generated. If
the workspace module R-code specification is No, then R-code is not generated. If the
workspace R-code specification is No, then R-code is not generated.

5. Xrefs are only generated on compiles of source in the workspace directory. Compilation
of source in task or group directories does not generate cross-references.

6. When a current task is selected and an object belonging to the task is selected for
compile, both the source in a task directory and workspace directory will be compiled.
The source in the task directory is compiled because the object belongs to the currently
selected task. The source in the workspace module might compile because of
dependencies in the workspace. For example, if the source in the workspace directory
uses a field whose definition has changed, then the source would be compiled to bring it
up to date. This ensures the most accurate view of the system possible.

7.3.2 Compile Object Without Xref
Compile performs a compile but doesn't produce Xrefs. This option will be faster than a
compile with Xref but does not change the update status of the object to Current. An object
must have a status of Current before it can be checked in. A compiled .r file will not be
produced for objects that have a share status of other than Central. Use the Compile Object
Without Xref to check the syntax or any procedure and update the .r file of the procedure if
the object has a share status of Central.

Choose Compile→Compile Object Without Xref. Roundtable performs a workspace compile
for the selected object. If Roundtable finds errors, a procedure window is opened with the
error report in it.

7.3.3 Compile with Xref
The compile with cross references function performs a compile and produces Xrefs records if
the object has a share status of central. A compile with Xref will change the update status of
an object from Modified to Complete if the compile is successful.

Tools

 7-7

Choose Compile→ Compile with Xref from the Tabletop menu. Roundtable performs a
workspace compile for the selected object.

7.3.4 Selective Compile Dialog Box Description
The compile dialog box lets you specify the task number, module, object group, object type,
and object names to compile. For all fields except the task number, you can enter an asterisk
(*) to signify all (such as all object types, all object names, etc.). The selective compile
process compiles objects selected by the criteria and any object that is affected by a selected
object. For example, if an include file is found because of your selection criteria and the
include file has changed, then any programs that use the include file will be recompiled.

The following table describes the fields in the Selective Compile window:

Field Description

Task Number A fill-in for the task number for the compile. If you
enter a task number, Roundtable restricts its search
for objects to those included in the specified task. If
you enter a value of 0, the search is not restricted to
any task.

Module A fill-in for the module for the compile or an asterisk
(*). If you enter a specific module, Roundtable
restricts its search for objects to that module.

Object Group A fill-in for the group to compile or an asterisk (*). If
you enter a specific group, Roundtable restricts its
search for objects to that group.

Object Type A fill-in for the specific type of object or an asterisk
(*). Roundtable restricts its search for object to
objects of the specified type.

Roundtable User's Guide

 7-8

Field Description

Object A fill-in for the object name or a match expression
using an asterisk (*) placeholder (wildcard). For
example, you could specify a value of "ar*.p" to
restrict Roundtable to searching for objects that begin
with "ar" and end with ".p".

Compile with Xref Activate this toggle box to create a compile with
cross-references.

Force Compile Activate this toggle box to force each selected object
to compile, even if Roundtable doesn't think the
object needs compiling. Normally, Roundtable keeps
track of which objects should be recompiled.

Listings Activate this toggle box to print the fully expanded
code (with the include files). This is the Listing
parameter in the Progress COMPILE statement.
Roundtable saves the listing file as list*.l. An
Xref listing is also generated if a full compile was
performed.

Asynchronous

(AppServer only)

Activate this toggle box to free your Roundtable
client session while the compile processes on the
server partition.

Show Meter
(Client/Server only)

Activate this toggle box to display a status window
showing the progress of the selective compile
process.

Stop On Error Activate this toggle box to stop the compile process
whenever a selected object generates a compile error.

7.3.5 Selective Compiles
A selective compile gives you a number of options. You can enter a specific task to compile or
you can enter a 0 to disregard the task number. If you specify a task number and a PFIELD or
PCODE, Roundtable will compile all affected PCODE objects (disregarding task number). If
you enter 0 for the task number, Roundtable compiles:

• Objects in the current task that have changed

• Objects outside the current task that are referenced by objects within the task that have
changed

Tools

 7-9

• Objects within the current task that are referenced by objects outside the task that have
changed

Follow these steps to selectively compile objects in your workspace:

1. Choose Compile→Selective Compile from the Tabletop menu to display the Compile
dialog box.

2. Enter your selective compile options in the Compile dialog box. These options include the
task number, module, object group, object type, and object name. For each of these fields,
except the task number, you can enter an asterisk (*) to indicate all.

3. Choose the Start Compile button.

4. Choose the Close button to close the window.

NOTE: The Selective Compile window is persistent. This allows you to keep the window
open.

7.4 Module Load
Module Load is a utility program that loads large numbers of PCODE objects into a
workspace managed by Roundtable. To load the objects, Roundtable scans a directory
specified by a workspace module for files that have not already been defined as PCODE
objects in your workspace. By browsing through this table, you can choose the files needed to
create PCODE objects.

Prior to using Module Load, you must define your subtypes and products. In addition, you
must create the workspace where the PCODE objects exist.

You can customize Module Load to some extent. This is done by modifying the program
rtb/w/rtb_modload.w. If you modify this program, be sure to keep a copy of your
modified program in another directory so that future updates to Roundtable do not overwrite
your copy.

NOTE: Module Load does not automatically find and store WRX files as parts of your
PCODE objects. To have Roundtable recognize WRX files that need to be stored,
you must perform a File Save on the window program from AppBuilder. See the
"WRX Files" section in Chapter 6 for more details.

NOTE: Module Load does not automatically add cross-referencing to your SMARTOBJECT
programs. To have Roundtable add cross-referencing to your SmartContainers, you
must perform a File Save on the window program from AppBuilder. See the
"SMARTOBJECT Cross Referencing" section in Chapter 6 for more details.

Roundtable User's Guide

 7-10

7.4.1 Starting Module Load
Before using Module Load, you need to:

1. Define Code Subtypes and Products. See the sections "Defining a Configuration
Hierarchy", "Subtypes", and "Products" all in Chapter 3.

2. Create the Workspace where the PCODE objects exist. See the "Adding a
Workspace"section in Chapter 4.

3. Assign Workspace Sources. See the "Workspace Sources"section in Chapter 4.

4. Create and select a Task. See the sections "Adding a Task" and "Selecting a Task," all in
Chapter 5.

7.4.2 The Module Load Window
The Module Load window has a multiple-select browse of the files found in the module’s
directory. This allows you to select an arbitrary number of files to change their attributes
before loading them.

Tools

 7-11

The following table lists the Module Load window fields and buttons:

Field or Button Description

Workspace Module Select the Workspace Module to scan and load from
this drop-down list.

Scan comments to build
descriptions.

Activate this toggle box to build object descriptions
from comments in the source file(s).

Scan by filespec Select this radio button to scan the Workspace
Module directory for files matching the filespec that
you provide.

Scan by subtype Select this radio button to scant the Workspace
Module directory for objects of the selected Code
Subtype.

Filespec Filespec used when scanning by filespec.

Subtype Code subtype used when scanning by Subtype.

Scan Choose this button to scan the Workspace Module
directory using the selected scan criteria.

Clear Clears the object browse of unloaded objects
matching the selected scan criteria.

Select Choose this button to select browse objects matching
a specified pattern.

Deselect Choose this button to deselect browse objects
matching a specified pattern.

Properties Allows you to change the properties of selected files.
If you have selected more than one file, some of the
properties (such as Object Description) are not
available for changing. Any changes that you make
will affect all of the selected files. Object properties
that you can change are: product module, code
subtype, object group, object group level, summary
object description, and detailed object description.

Roundtable User's Guide

 7-12

Field or Button Description

View Choose this button to view the contents of the
selected object.

Load Choose this button to create Roundtable object
records for the selected unloaded object(s). Files that
have been loaded are indicated by a status of “Done”.

Unload Deletes the Roundtable object records created by the
load process for the selected source files. Choose
Unload if you change your mind about some files
that you loaded. Only files with a status of “Done”
can be unloaded.

Browse Fields

Status New indicates that the PCODE object has not been
created. “Done” indicates that a PCODE object was
created for the source file.

Object The name of the source file.

Sub Type The name of the subtype to assign to the new
PCODE object The subtype can be changed through
the Properties dialog box. This field is blank if the
subtype has not been assigned yet. A file cannot be
loaded until a subtype has been assigned to it.

Pmodule The product module that the PCODE object will be
assigned to. The Pmodule can be changed through
the Properties dialog box. This field is blank if the
subtype has not been assigned yet. A file cannot be
loaded until a subtype has been assigned to it.

Object Group Used for sorting objects within a module. The Object
Group can be changed through the Properties dialog
box.

Level Used for sorting objects within a module. The level
can be changed through the Properties screen.

Fullpath The fully qualified path and name of the source file.

Tools

 7-13

Roundtable User's Guide

 7-14

The following table lists the Module Load buttons:

Button Description

Properties

View Allows you to view the source file in a Procedure
Window.

Load… Initiates the load of all selected files. Only selected
files with code subtypes and product modules defined
can be loaded.

Unload… Deletes the Roundtable object records created by the
load process for the selected source files. Choose
Unload if you change your mind about some files
that you loaded. Only files with a status of Done can
be unloaded.

Tools

 7-15

7.4.3 Changing Code Properties
To change the properties of one or more selected objects, choose the Properties button. The
Roundtable Code Properties dialog box appears.

Some of these fields are not editable if you have select more than one file. Any changes that
you make in the Properties dialog box will affect all of the selected files.

The following table lists the Properties dialog box fields:

Field Description

Object The object name (display only).

Alias Activate this toggle box to create an alias object
record.

Code Subtype Edits the name of the subtype to assign to the new
PCODE object

Group Edits the group name used for sorting objects within
a module.

Pmodule Edits the Product module that the PCODE object is
assigned to.

Roundtable User's Guide

 7-16

Field Description

Level Edits the level field used for sorting objects within a
module.

Error Any error message encountered during attempted
load of the object. (Display only)

Reset Error Activate the toggle to clear the Error status of an
object that failed to load.

Summary Description Provides a short description of the PCODE object.
This is used often in reports.

Detailed Description Provides an additional description of the PCODE
object.

7.4.4 Loading the Source Files
Choose the Load button to start the process of creating PCODE objects for the selected files.
Only selected files with defined Code Subtypes and Product Modules can be loaded. Files that
have been loaded are indicated by a status of “Done”. Objects that could not load due to an
error are indicated by a status of “ERROR”.

You can unload files by choosing the Unload button. Only the selected files with a status of
“Done” can be unloaded. The PCODE objects created by the load process are deleted.

7.5 Test Version Integrity
Use the test version integrity utility to determine if a file in the workspace directory had been
modified outside of Roundtable. This tool performs a CRC check on the contents of the object
in the operating system directory and then compares it with the CRC generated when the
object was stored in the repository. If these CRC values do not match then the object has been
modified outside of Roundtable. WIP objects cannot be checked in this manner.

Follow these steps to check the version integrity of a PCODE Object:

1. Select the object to test in the object browse table.

Tools

 7-17

2. Choose File→Τest Version Integrity from the Tabletop menu. The Version Integrity
dialog appears:

Differences are indicated by “Yes” in the Differences field.

3. Choose the OK button to close the dialog.

Roundtable User's Guide

 7-18

7.6 Visual Difference
Roundtable provides access to a visual difference application. A visual difference application
is a program that allows you to compares two versions of the same file by displaying them in
adjacent windows. Typically, these programs tell you which lines of code have been added,
deleted, or modified. The added, deleted, and modified content is color-coded for easy
identification.

For example, you might need to compare the latest copy of a file to an earlier version to see
what changes have been made. Roundtable allows you to compare the two versions using the
configured visual difference application.

The visual difference application is a separate program from Roundtable, but you can open it
from inside Roundtable. A freeware visual difference application is distributed with
Roundtable, but you can configure Roundtable to use the visual difference application of your
choice.

7.6.1 Configuring the Visual Difference Application
Roundtable allows you to use the visual difference application of your choice to compare
versions of objects. The visual difference application to use is configured on a user-by-user
basis and stored in the Windows system registry. Follow these steps to configure the visual
difference application.

1. Choose Admin→Preferences from the Tabletop menu. The User Preferences dialog box
appears.

2. In the Visual Diff field, enter the command to start your visual difference application.
You may choose the lookup () button to locate the application on disk.

3. The command that you enter should be followed by four parameters: “%1”, “%2”, “%3”,
and “%4”. At runtime these parameters will be substituted as follows:

%1 Pathname to first file

%2 Pathname to second file

%3 Window title for the first file

%4 Window title for the second file

Put these parameters in the order required by your application.

7.6.2 Comparing Files with Visual Difference
1. Select a PCODE object from the Tabletop object browse.

Tools

 7-19

2. Choose the VisDiff () button from the Tabletop toolbar. The VisDiff dialog appears.

The First Object to Compare panel defaults to the object version that is currently selected
in the Tabletop. The Second Object to Compare defaults to the previous version of the
object.

If either of the object versions is a multi-part object, you can select the part to compare
from the respective Part drop-down-list. If you want to compare different objects or
different versions other than the defaults, select the different object or version (using
Versions view) on the Tabletop object browse and choose the corresponding Set button
(Object Version 1 or Object Version 2) to select that object version for comparison.

3. Choose the Compare button. Roundtable runs the configured visual difference
application, passing the files to compare.

7.7 Partner Site Replication Window
The Partner Site Replication window provides a visual interface for loading workspace
information from a partner development site. Partner site deployments are used to move
information among different Roundtable Repositories.

Roundtable User's Guide

 7-20

Field or Button Description

Receipt Workspace A drop-down list of Workspaces identified as Partner
Site receipt Workspaces.

Load Options Choose the source for the Partner Site data:

• From Disk – The data will be loaded from a
Partner Site deployment on disk.

• On-Line – The data will be received over a
network either through an AppServer
connection or through a direct connection to
the remote repository.

AppServer Partition Choose the option to connect to the AppServer
partition selected in the Partition drop-down-list.

Direct Database Choose this option to connect to a remote repository
using the connection parameters that you supply.

Tools

 7-21

Field or Button Description

Connect Initiates a connection to the specified
AppServer/database.

Releases Received A browse table listing the Partner Site releases
already loaded by the local site.

Load Loads the selected release into the local repository.

Partner Releases Available A browse table listing the releases that are available
at the Partner Site (AppServer only).

Populate Workspace Activate this toggle box to populate the Partner
Workspaces after the data transfer is complete (On-
Line transfers only).

Objects Displays the objects in the selected available release
(On-Line only).

Load Workspace button Starts the Partner Site Replication process.

7.7.2 Loading a Partner Site Release
Follow the steps below to load a partner site release:

1. Choose Tools→Partner Site Replication from the Tabletop menu. The Partner Site
Replication Window appears.

2. Select the Partner Site Workspace to load from the Receipt Workspace drop-down list.

3. Select the source of the Partner Site data (Disk or On-Line). If loading from disk, skip to
step 8.

4. Select AppServer or Direct Database as appropriate.

NOTE: Your session must be connected to your own site’s repository database in order to
connect a remote site via AppServer. You cannot make an AppServer connection
to a remote repository if your Roundtable session is connected via AppServer to
your own site’s repository.

5. If loading via AppServer, select the appropriate AppServer partition from the drop-down
list.

6. If loading via a direct database connection, supply the connection parameters in the space
provided.

Roundtable User's Guide

 7-22

7. Choose the Connect button to connect to the on-line data source.

8. Choose the Load button to begin the workspace information load process. A status dialog
appears while the information in loaded into the repository.

9. Close the Partner Site Replication window.

10. If the workspace has not been loaded before you will have to find each PDBASE object
managed by the workspace and specify the connection parameters for the workspace's
databases.

11. If cross reference information is being maintained for the workspace you must do a full
workspace compile to ensure that it is up to date after the load process.

7.8 Load Schema
The Load Progress Schema utility loads the schema of an existing database into Roundtable.
This utility creates PFILE and PFIELD objects for each of the file and field definitions found
in the Progress database.

Load Schema can load changes made to the Progress database schema. If changes were made
to the physical database schema by some tool other than Roundtable (such as the Progress
Data Dictionary), then you can use Load Schema to bring Roundtable’s logical schema object
definitions in sync with the physical Progress database schema.

Load Schema can only be run when the Roundtable client session is connected to the
Roundtable repository database. You cannot run Load Schema when connecting to the
repository via AppServer.

7.8.1 Load Schema Window
When you run Load Schema, the following window appears:

Tools

 7-23

The following table lists the Load Schema dialog box fields:

Field Description

PDBASE The name of the selected PDBASE object (Display
only).

Object Prefix Normally, this field should be left blank. An object-
naming prefix is required when you are loading a
database into Roundtable that has files of the same
name as those in a database previously loaded. The
prefix allows Roundtable to create object names
unique to the new database.

Update Level Do you want revised schema objects to be checked
out with Version, Revision, or Patch?

Roundtable User's Guide

 7-24

Field Description

Pmodule Normally, this should not be changed.

If you select a specific product module, then new
schema objects are created in that product module.
Modified schema objects that already exist in the
product module that you specified are checked out
normally. Modified schema objects that already exist,
but in a different product module than the one you
specified, are replaced by an object variant with the
product module that you specified. See the "Object
Variants" section in Chapter 4 for a complete
description of object variants.

Status Area for display of status information during the
Load Schema process.

7.8.2 How to Run the Load Schema Function
Follow these steps to run the Load Schema function:

1. Make sure that there are no WIP schema objects in the workspace. (The Load Schema
process performs this check for you before it gets started.)

2. The Load Schema process locks the workspace while it is running. Nobody can modify
objects in the workspace while you are running Load Schema.

3. Create and select a task.

4. Find and select the PDBASE object whose schema you want to load.

5. From the Tabletop menu, choose Workspace→Load Schema. The Load Schema window
appears. Specify the options that you require, and choose the Load button to continue.

6. If sequences, tables, or fields are dropped and more are added, you will be prompted if
any of them are renamed:

Tools

 7-25

You must indicate if any sequences, tables, or fields are renamed. Otherwise, when
schema updates are done in the target workspaces or target deployment sites, the
sequences, tables, or fields will be dropped and re-added, and their data lost.

If you choose to rename any tables or fields, then only the “local” table or field name is
changed in the Roundtable schema object records. The name of the Roundtable object
does not change. This can cause some minor confusion, because the PFILE or PFIELD
object name will not match the physical name of the corresponding table or field. For
example, if you rename a table from “cust” to “customer”, then you will have a PFILE
object named “cust”, but it will be represented as a table with the name “customer” in the
physical database schema. This is not a problem for sequences, because sequences are
represented as attributes of the PDBASE object; there is no such thing as a “sequence”
object in Roundtable.

If data loss in target workspaces or deployment sites is not an issue, you can ignore this
rename option. The original PFILE or PFIELD will be dropped, and a new one added.
The object name remains the same for the physical table or field name.

Follow these steps to select a sequence, table, or field for renaming:

1) Select the renamed item from the first selection list.
2) Select the new item name from the second selection list. The new name of the item

is displayed in the Delete or Rename to: column of the first selection list.
3) Repeat these steps for any other items that have been renamed.
4) Press the OK button to complete this dialog.

7. If there is an object naming conflict, you will be prompted to provide a new object

name. For example, if your workspace already has a PFILE object named

Roundtable User's Guide

 7-26

“customer”, and your new schema re-adds a “customer” table, you must either
provide an alternate name for the PFILE object, or specify a different product module
that it can be added to.

8. If any tables or fields are dropped, then the following dialog box appears:

Normally, you should choose Yes to delete any unused object definition records from
your workspace. Choose No to re-assign the schema objects back into one of your
workspace databases.

9. Once the Load Schema is done, complete your task to check in all of the new or
modified schema objects.

7.8.3 How to Check for a Successful Load Schema Completion
Once the Load Schema is done and your task is completed, check the following:

• The Database Integrity Check Report should indicate no differences.

• The Workspace Schema Update should not find any schema that requires updating.

7.8.4 How to Handle a Canceled or Crashed Load Schema
If the Load Schema process is interrupted, you have one of two options:

1. Remove the partially loaded schema, and then re-run Load Schema, or
2. Simply re-run Load Schema to complete the partially loaded schema.

NOTE: Removing partially loaded schema should only be done for the initial load of a
database, as it removes from the Workspace the PDBASE object and all of its PFILE
and PFIELD objects. Removing schema at any other time can cause several problems.

 Follow these steps to remove the partially loaded schema:

1. Select the PDBASE object with partially loaded schema from the Tabletop object browse.

2. Choose Workspace→Remove Schema from the Tabletop menu. The Remove Schema
dialog box appears.

Tools

 7-27

3. Choose the OK button to remove the selected database schema from the Workspace. The
PDBASE and all of its PFILE and PFIELD objects are removed from the Workspace.

Once you have corrected the error(s) that interrupted the Load Schema process, follow these
steps to complete the process:

1. Select the task created for Load Schema.

2. From the Tabletop menu, choose Workspace→Load Schema. The following warning
appears:

3. Make sure that no one else is running Load Schema in the Workspace, and then choose

the Yes button to continue.

7.8.5 Load Schema and Object Domains
Load Schema only reads one physical database, and it makes changes to logical object
definitions as appropriate. Table and field domains present potential problems. However, with
a little care, these problems can be avoided entirely.

If a PFIELD object definition is used more than once within a database, then Load Schema
sets the attributes of the PFIELD object based on the last physical field definition that it looks
at. This means that you are not guaranteed that your field domains will all be in sync by just
running the Load Schema process.

If you use field domains and changed your schema outside of Roundtable, make sure you run
the Database Integrity Check Report after running Load Schema. You will have to manually
re-synchronize any fields that fell out of step.

To avoid this problem, do not make changes to field domains outside of Roundtable’s schema

Roundtable User's Guide

 7-28

management.

If a PFILE or PFIELD object definition is used in more than one database, Roundtable and
your schema might fall out of step if you make changes to one of those databases outside of
Roundtable’s schema management.

The following steps might cause this problem:

1. Use a PFIELD or PFILE object definition in more than one of your workspace databases.
(Call the databases “A” and “B”.)

2. Use a tool other than Roundtable (for example: Progress Data Dictionary) to change the
related object’s definition in just one of the databases (database “A”).

3. Run Load Schema against database “A”.

Database “A” and Roundtable are in sync, but database “B” and Roundtable are now out of
sync.

If you use field or table domains, and have changed your schema outside of Roundtable, be
sure to run the Database Integrity Check Report on all of your databases after running Load
Schema. You will have to manually re-synchronize any fields or tables that fell out of step.
Depending on the number of schema objects that are out of sync, it might be easier to use the
Progress Data Administration tools to dump a .df between the two databases, and then apply
the necessary parts of the .df file to the database to bring it back in step.

To avoid this problem, do not make changes to field domains or table domains outside of
Roundtable’s schema management.

7.9 Server Upload Window
The Server Upload window enables you to deploy objects from a Workspace to a remote
WebSpeed or AppServer host using the transfer facilities provided by those products. The
Server Upload utility eliminates the need for other access to these servers, such a FTP or
shared directories, for deploying server-side code from Roundtable Workspaces.

Tools

 7-29

The following table lists the Server Upload window fields and buttons:

Field or Button Description
AppServer Choose this radio button to upload objects to an

existing AppServer partition.

WebSpeed Server Choose this radio button to upload objects to an
existing WebSpeed broker.

Partition Used for AppServer uploads. Drop-down list of defined
AppServer partitions.

Remote Path Used for AppServer uploads. The target root directory
on the AppServer file system. Uploaded objects will be
written to the AppServer file system relative to this
directory.

URL Used for WebSpeed uploads. URL to the target
WebSpeed broker. Defaults to the WebSpeed broker
URL defined in AppBuilder Preferences.

Roundtable User's Guide

 7-30

Field or Button Description
Module Used to filter the object list by Workspace Module.

Group Used to filter the object list by Object Group.

Apply Filter Filters the object list using supplied Module and/or
Group values.

Blank Blanks the Module and Group fill-ins.

Reset Resets the Module and Group fill-ins to pre-edit values.

R-Code Used for AppServer uploads. Activate this toggle box
to transfer r-code instead of source files.

Dependencies Used for AppServer uploads. Activate this toggle box
to transfer objects necessary to compile code on the
AppServer partition. For example, if you select to
upload a .p file that references an include file, the
include file will also be uploaded.

Web Compile Used for WebSpeed uploads. Activate this toggle box
to compile embedded SpeedScript after deploying
objects to the WebSpeed broker.

Upload Choose this button to upload selected object to the
selected server.

7.9.1 Deploying Web Objects
Use the following steps to move web objects to the web server:

1. Choose Tools→AppServer/WebSpeed Upload from the Tabletop menu. The Server
Upload window appears.

2. Choose the WebSpeed Server radio button in the Server Info panel.

3. Verify or edit the WebSpeed broker URL.

4. Optional. Use the Module and Group filter to filter the objects displayed in the browse.

5. Optional. Activate the Web Compile toggle to compile embedded SpeedScript on the
broker.

6. From the objects displayed in the browse, range select or highlight individually (using
ctrl-left click) the objects to move to the web server.

Tools

 7-31

7. Choose the Upload button to deploy the selected objects to the specified web server.

8. Close the Server Upload window.

7.9.2 Deploying Objects to an AppServer
When developing distributed applications with Roundtable, a workspace may contain some
client-side code objects and some server-side code objects. Although Roundtable allows
workspaces to be contained on remote systems using UNC paths and mapped network drives,
developers may wish to place server-side objects on an AppServer partition that is not
accessible through the workspace path for testing or local deployment purposes.

Sites that require access to AppServer partitions from Roundtable that do not have a means of
accessing a remote directory through the workspace path need a way to move objects from
Roundtable workspace to an AppServer partition.

This release of Roundtable provides a means for copying objects (both source and/or r-code)
from a workspace to an AppServer partition using AppServer itself, rather than using FTP,
NFS or other file transfer methods. Copying an object to an AppServer partition depends upon
Roundtable connecting to an AppServer broker (defined using the Progress AppServer
Partition Deployment Tool). Then sending the object to a server-side program to place the
object on the AppServer partition.

If you can access your AppServer partition through the workspace path (i.e. the AppServer
partition directory is the same as the workspace path, or a subdirectory under the workspace
path as defined by a workspace module and/or code subtype), there is no need to move objects
from a Roundtable workspace to a remote location. These instructions are intended for sites
where the AppServer partition is not accessible through the workspace path.

Enabling Roundtable to copy objects to an AppServer partition using Roundtable's Server
Upload window requires these setup steps:

1. Setup an AppServer according to Progress documentation.

2. Manually copy the Roundtable programs rtb/p/rtb_asio.p and rtb/p/rtb_fileio.p
located under the Roundtable installation directory to the AppServer partition(s). These
programs may be placed anywhere on the AppServer partition, so long as they are in the
App-Service's PROPATH.

3. Compile the above programs on the remote system.

Roundtable User's Guide

 7-32

Follow these instructions to move objects from a workspace to an AppServer partition, once
the setup has been done:

1. Choose Tools→AppServer/WebSpeed Upload from the Tabletop menu. The Server
Upload window appears.

2. Choose the AppServer radio button in the Server Info panel.

3. Select the target AppServer partition from the Partition drop-down list.

4. Verify or edit the remote path.

NOTE: The entire path of the remote object will consist of:
 - remote path
 - subdirectories indicated by Workspace Modules and/or code subtypes
 - object name

5. Optional. Use the Module and Group filter to filter the objects displayed in the browse.

6. Optional. Activate the R-Code toggle to deploy only r-code to the AppServer partition.

7. Optional. Activate the Dependencies toggle to deploy dependent objects along with the
selected objects.

8. From the objects displayed in the browse, range select or highlight individually (using
ctrl-left click) the objects to move to the web server.

9. Choose the Upload button to deploy the selected objects to the specified AppServer
partition.

10. Close the Server Upload window.

A
Interfaces

A.1 Introduction
This appendix describes the entry points into the Roundtable environment that you can use to
customize your environment and a thorough description of PROPATH management in
Roundtable.

• Edit Program: rtb/p/rtb_open.p

• Managing Application Data with the Edit Program

• Report Source File Locations

• Task Record Access Using the Ref-num Field

• Roundtable PROPATH Management

• Roundtable Interfaces with the ADE

• Hooks and Application Programming Interfaces

A.2 Edit Program: rtb/p/rtb_open.p
A specialized edit program can be associated with a subtype. The name of your edit program
is stored in your PCODE subtype's Edit Program field. See the "Subtypes" section in Chapter
3. When you instruct Roundtable to edit an object, your specialized edit program runs. There
is a specific programming interface required for the edit program that includes a Pmode
parameter. This Pmode parameter is used to instruct edit programs to do specialized tasks like
import, export, and delete on the data in the managed objects.

The rtb_open.p procedure is provided as source for your examination. As provided,
rtb_open.p runs rtb_winopen.p, also provided as source, which launches applications
that edit files based on the filename extension.

Roundtable User's Guide

 A-2

A.3 Managing Application Data with the Edit Program
Sometimes it is necessary to keep track of versions of data in an application. This data could
be static code tables, menu content, program generation data, or seed data to be delivered with
an application. It is possible to manage this data by developing user-defined edit programs
specific to the application data on which version control is desired. The name of your edit
program is stored in your PCODE subtype's Edit Program field. See the "Subtypes" section in
Chapter 3.

A.3.1 Edit Program Guidelines
The only way to run one of these programs should be from the Roundtable environment. This
will prevent making untracked changes in the application data.

Each program should have Edit, View-only, Import, Export, and Delete modes:

• Edit Mode should allow the entering or editing application data. Roundtable will run the
program in Edit Mode when the object is WIP and owned by the current task.

• View Mode should allow only viewing application data. Roundtable will run the program
in View mode when the object is not WIP or belongs to a task other than the current task.

• Import mode should delete current data (if any) in the application database and then load
the object by reading in new content from one or more text files formats specific to the
type of managed data. Roundtable will run the program in Import mode when the All
PCODE Data Imports option is chosen from the WS-config menu or just prior to the first
Edit of the program after a recent assignment of the object to the workspace. The Import
process assigns objects to a workspace. It is also possible to manually assign a version of
an object to the workspace.

• Export mode should create one or more text files containing the data stored in the
application database. This process is run prior to the completion of the object and the
registration of the object’s text files into the repository.

• Delete mode should delete data associated with the object from the application database.

• An optional View-Hist mode can be supported by the application edit program if desired.
This mode would allow the view of a prior version of the object. When you select a
previous version of an object and choose the Edit option off the PCODE Object Menu,
Roundtable creates one or more temporary files by retrieving the requested version from
the repository. The edit program in View-Hist mode should allow the user to review this
earlier version of the object without corrupting the current application database. This
mode is optional.

• An optional Xref mode can be supported by the application edit program if desired. This
mode allows the program to generate Roundtable Xref entries. This option can be
especially useful for applications where the application menus are driven by tables in the
application database. This mode is optional.

Interfaces

 A-3

A.3.2 Sample Edit Program Application
Here is a sample Menu Manager application to illustrate how an edit program interface can be
implemented.

This edit program allows the Roundtable system to manage menu tables in an application
database. The application menus are contained in two tables in the application database:

• menu_header: Describes the menu and its placement on the screen

 menu-name x(32)
 menu-title x(76)
 menu-row integer
 menu-col integer

• menu_item: Describes each menu item

 menu-name x(32)
 item-seq integer
 item-type P)rogram, M)enu
 item-name x(32)
 item-desc x(76)

A PCODE Subtype called menuman is created in Roundtable. An edit program named
menuman.p is specified. This program has the following prototype definition:

/* menuman.p -- MENU MANAGER */

DEFINE INPUT PARAMETER Pmode AS CHARACTER NO-UNDO.

DEFINE OUTPUT PARAMETER Perror AS CHARACTER NO-UNDO.

/* Shared variable definitions passed by Roundtable */

DEFINE SHARED VARIABLE Urtb-object AS CHARACTER NO-UNDO.

DEFINE SHARED VARIABLE Urtb-part AS CHARACTER EXTENT 10 NO-UNDO.

DEFINE SHARED VARIABLE Urtb-part-desc AS CHARACTER EXTENT 10 NO-UNDO.

DEFINE SHARED VARIABLE Urtb-path AS CHARACTER EXTENT 10 NO-UNDO.

DEFINE SHARED VARIABLE Urtb-name AS CHARACTER EXTENT 10 NO-UNDO.

DEFINE SHARED VARIABLE Urtb-tmpl AS CHARACTER EXTENT 10 NO-UNDO.

DEFINE SHARED VARIABLE Urtb-num-parts AS INTEGER NO-UNDO.

DEFINE SHARED VARIABLE Urtb-sub-type AS CHARACTER NO-UNDO.

DEFINE SHARED VARIABLE Urtb-userid AS CHARACTER NO-UNDO.

DEFINE SHARED VARIABLE Urtb-task-num AS INTEGER NO-UNDO.

DEFINE SHARED VARIABLE Urtb-task-desc AS CHARACTER NO-UNDO.

DEFINE SHARED VARIABLE Urtb-PROPATH AS CHARACTER NO-UNDO.

DEFINE SHARED VARIABLE Urtb-ws-PROPATH AS CHARACTER NO-UNDO.

DEFINE SHARED VARIABLE Urtb-mod-dir AS CHARACTER NO-UNDO.

IF Pmode = "Edit" THEN

Roundtable User's Guide

 A-4

DO: /* Allow user to update data related to object in application database

*/

END.

ELSE IF Pmode = "View" THEN

DO: /* Allow user to view data related to object in the application

database */

END.

ELSE IF Pmode = "Import" THEN

DO: /* Delete current data. Load new data from text files. */

END.

ELSE IF Pmode = "Export" THEN

DO: /* Export data from application database to text files */

END.

ELSE IF Pmode = "Delete" THEN

DO: /* Delete data related to object from the application database */

END.

ELSE IF Pmode = "View-Hist" THEN

DO: /* Allow user to view data placed in temp text files retrieved from

repository */

END.

ELSE IF Pmode = "Xref" THEN

DO: /* Create rtb_xref records based on content of the object's data in app

database */

END.

ELSE

Perror = "Unknown Mode".

RETURN.

A.4 Report Source Files Locations
All of the reports in the Roundtable system are generated in report library procedures that are
provided in source form for your convenience. The library and procedure that produced a
report are shown in the report header.

If you decide to modify a report, copy the modified report library procedure to a new directory
with a new name so that your modifications are not overwritten by future updates of
Roundtable.

The following table shows the report library procedures and the reports that they produce:

Report Library Contained Reports

Interfaces

 A-5

Report Library Contained Reports

rtb/p/rtb_rpt_product.p • Product Report

• Product Modules Report

• Versions in Product Module Report

rtb/p/rtb_rpt_repo • Repository Check Report

rtb/p/rtb_rpt_schema • Database Definition Report

• Database Integrity Check Report

• PDBASE Object Report

• PFIELD Object Report

• PFILE Object Report

• Table Definition Report

• Unapplied Changed Report

• Unapplied Changes for PDBASE Report

• Unapplied Changes in PFIELD Report

• Unapplied Changes in PFILE Report

rtb/p/rtb_rpt_subt.p • Code Subtypes Report

rtb/p/rtb_rpt_task.p • Task Report

• Object Orphans in Task Report

rtb/p/rtb_rpt_wspace.p • Versions in Workspace Report

• Workspace Report

• Workspace Changes Report

• Workspace Differences Report

• Workspace Event History Report

• Workspace Import Report

• Workspace Release Report

• Workspace Deployment Sites Report

rtb/p/rtb_rpt_xref.p • External Objects Report

• Index Usage Report

Roundtable User's Guide

 A-6

Report Library Contained Reports

• Informal Xref Report

• Call Diagram Report

• Object Usage Report

• Where Used Report

• Xref Report

• Unused Objects Report

A.5 Task Record Access Using the Ref-num Field
Tasks are a significant part of managing work with the Roundtable system. Often customers
want to retrieve information on tasks in the Roundtable system using a key field value that is
meaningful to their support and management staff. A field called user-task-ref is included in
the task record and indexed by rtb_task07.

Since the Roundtable repository is a Progress database, you can use standard Progress 4GL
commands to access the task records in the database.

Be careful to find records NO-LOCK in your reporting routines to avoid competing with
Roundtable for locks on these important records.

A.6 Roundtable PROPATH Management
Roundtable has a set of rules that it follows regarding PROPATH management so that it can
provide an environment that makes it easy for you to switch from task to task, or even from
workspace to workspace. Of course, it also has to ensure that its own programs can be found
in the PROPATH.

A.6.1 Roundtable in the PROPATH
The Roundtable startup program, _rtb.p, adds <RTB> and <RTB>/rtb to the front of your
Progress default session PROPATH, where <RTB> is the Roundtable install directory.

It will only prefix the PROPATH with <RTB> if it is not already there. <RTB> is already in
your PROPATH if you have installed the compiled Roundtable programs into <DLC>/gui.

It will prefix the PROPATH with <RTB>/rtb regardless of whether or not it has already been
defined in your PROPATH. This ensures that <RTB>/rtb always comes before <DLC>/gui so
that the Roundtable version of some ADE programs are found first. See the "Roundtable
Interfaces with the ADE" section in this appendix.

Interfaces

 A-7

A.6.2 Workspace Directories in the PROPATH
When you select a workspace, your workspace directories are added to the front of your
PROPATH. You define your workspace directories in the workspaces maintenance screen.
Note that if you have special tokens defined in your workspace directories, then these will be
expanded and added to your PROPATH.

A.6.3 Task Groups and Task Directory in the PROPATH
When you select a task, Roundtable checks to see if it belongs to any task groups. If it does,
then these are added to the front of your PROPATH.

Finally, if the task is not Central, then the task directory is added to the very front of your
PROPATH.

Here is the order of the directories that Roundtable may add to your PROPATH (where
<RTB> is the Roundtable install directory):

<task directory> + <group directories> + <workspace directories> + <RTB/rtb> + <RTB> +
<the default PROPATH defined for your session>

A.6.4 The PROPATH During Roundtable Wait States
Any time that a wait state is set in Roundtable, the Roundtable directories are automatically
moved to the very front of your PROPATH. This improves Roundtable’s execution speed. If
a long string of directories is built up in your PROPATH in front of the Roundtable
directories, then every RUN statement executed within Roundtable becomes very slow.
Progress would have to look through your task, group, and workspace directories before it
could finally find the Roundtable programs in its PROPATH.

As soon as the wait state has completed, then the Roundtable directories are moved back down
to their original position in the PROPATH.

A.7 Roundtable Interfaces with the ADE
So that Roundtable can be a tightly integrated part of the Progress Application Development
Environment, various intercepts and hooks have been added to GUI Roundtable. This section
presents a summary description of some of these intercepts and hooks.

A.7.1 ADE Intercepts
Roundtable has its own version of the following programs, which are found in the <RTB>/rtb
subdirectory (where RTB is the Roundtable install directory):

Roundtable User's Guide

 A-8

• adeedit/_dlggetf.p - This is the File Open and File Save As dialog box used by the
Progress Procedure Editor.

• adecomm/_getfile.p - This is the File Open and File Save As dialog box used by the
Progress Procedure Windows and the UIB.

• adecomm/_chosobj.p - This is the Choose Object dialog that the UIB uses for selecting a
SmartObject for insertion into your current SmartContainer.

• adeweb/_webfile.w – For remote objects, this accesses the File Open and File Save As
dialog boxes used by the Progress Procedure Windows and the UIB.

These programs run before the Progress version of them because <RTB>/rtb is found in your
PROPATH in front of the Progress subdirectories.

For all three of these programs, the Roundtable version simply passes its parameters to the
main Roundtable persistent procedure. This triggers the Roundtable Tabletop to become the
active file selection window. From the Tabletop, you can choose to Open or Save As by the
OS. When you do that, these procedures call their counterparts found in the Progress
subdirectories, so that you can select files through the regular file selection dialog boxes
outside of the object management framework of Roundtable.

Roundtable also has its own version of adecomm/_adeevnt.p. All of the hooks described in
the next section go through this program.

Roundtable’s intercept programs are provided in source form.

A.7.2 ADE Hooks
Progress provides adecomm/_adeevnt.p as a primary source for hooks into the ADE. Please
see the comments in that program (as provided by Progress) for a detailed description of how
it works and what you can do with it.

Roundtable’s version of _adeevnt.p passes most of the hook events straight through to the
main persistent Roundtable procedure. This section describes the hooks Roundtable watches,
and how they are used:

• p_event = “Open”

Roundtable uses this event to finalize object locking and to keep track of which objects are
being viewed in read-only mode.

• p_event = “Close”

Roundtable uses this event to delete the object lock or to delete the entry out of the table that it
uses to keep track of which objects are marked read-only.

• p_event = “Before-Save”

Interfaces

 A-9

Roundtable uses this event to check that the object is not marked read-only. If it is marked
read-only, then Roundtable cancels the save operation.

If the product passing “Before-Save” is the UIB, then Roundtable also uses this event to check
whether or not the object being saved is a SmartContainer that runs other SmartObjects. If
so, then Roundtable runs rtb/p/rtb_gxrf.p (provided in source form), which adds an
internal procedure to your .W called “RTB_xref_generate”. This has no effect on your
program, but it does ensure that Xrefs are generated for the SmartObjects called by your
SmartContainer. You can see either rtb_gxrf.p or the comments placed in
RTB_xref_generate for a more detailed description. See the "SMARTOBJECT Cross
Referencing" section in Chapter 6.

• p_event = “Save”

Roundtable uses this event to handle the complexities involved if you do a “Save As” on one
Roundtable object to another Roundtable object.

If the product passing "Save" is the UIB, then Roundtable checks to see if there is a .WRX file
associated with your .W. If so, then Roundtable has to hold on to the name of the .WRX
file so that it can store it in the repository when you check in your .W. This way,
Roundtable can manage the deployment of your .WRX files for you. See the "WRX
Files" section in Chapter 6 for more details.

A.8 Hooks and Application Programming Interfaces (API)
If you would like to be able to write your own programs that interact with Roundtable, the
following section will describe some of the options available.

A.8.1 Event Hooks
Roundtable PUBLISHes an event, evRtbUserEvent, for several actions during a Roundtable
session. The parameters passed by the event indicate the action performed by Roundtable.
You can SUBSCRIBE to this event to extend and customize the functionality of Roundtable.

Roundtable provides a program called rtb_events.p, which can be found in the directory where
you installed Roundtable. This program SUBSCRIBEs to evRtbUserEvent and documents the
parameters PUBLISHed by the event. Additionally, the program provides backward
compatibility for earlier versions of Roundtable that used the rtb_evnt.p procedure.

By modifying rtb_events.p, you can intercept or filter various events that occur in a
Roundtable session. Below you will see a list of supported event hooks. Most of the event
hooks have a corresponding “Before” event, which is published immediately before the
indicated action. Please see the documentation inside the rtb_events.p program code for more
information.

Event Hook When Published

Roundtable User's Guide

 A-10

Event Hook When Published

addObject Creation of a new object.

deleteObject Deletion of an object from a Workspace.

createObjectVariant Creation of an object variant.

assignObject Assignment of an object to a Workspace.

compileObject Compile of an object.

checkinObject Check-in of an object to the repository.

checkoutObject Check-out of an object from the repository.

makeDeployment Workspace deployment is made.

createRelease Creation of a Release.

updateSchema Update Schema processing.

createTask Creation of a task.

completeTask Completion of a Task.

createSite Creation of a deployment site.

processImport Workspace Import processing.

changeWorkspace Selection of a Workspace.

moveToWeb Upload of objects to WebSpeed broker.

changeTask Selection of a Task.

loadPartner Load of Partner Site data.

changePropath Change of PROPATH.

changeObjectShareStatus Change of an object’s share status.

roundtableStartup Startup of Roundtable.

roundtableShutdown Shutdown of Roundtable.

sessionStartup Startup of Roundtable session.

sessionShutdown Shutdown of Roundtable session.

Interfaces

 A-11

A.8.2 Application Programming Interfaces (API)
Roundtable provides a number of procedure and function calls that allow you to automate
many Roundtable activities. These functions and procedures are accessed through the
SmartDataObjects (SDOs) that Roundtable is built upon. While each SDO primarily
represents a single table in the Roundtable repository, their API functions and procedures
access other tables as needed for query and update operations.

Roundtable SDOs may be used via a SmartContainer, or initialized in 4GL using the include
file provided for the SDO. These include files are located in the <RTB Install>/rtb/i
directory, and named similarly to the SDO. Since the many of the table have both a query
SDO and an update SDO, the SDO initialized by the include file is controlled by the use of a
preprocessor definition, START-SDO.

Roundtable User's Guide

 A-12

The following example shows using the API to list the objects referenced by the PCODE
object “sbborder.w”:

All of the API functions and procedures must be executed in the context of a valid Roundtable
session. That is, you must first login to the Roundtable repository before running any of the
SDO APIs. Many of the API functions require your Session ID (obtained at login) as an input
parameter.

/* Calling fnGetObjectXrefs() in the XREF SDO */

/* Initialize the update Xref SDO needed for fnRtbGetObjectXrefs */
&SCOPED-DEFINE START-SDO UPDATE
{rtb/i/rtb_s_xref.i}

/* Initialize the query object SDO needed for fnRtbGetObjectRecid */
&SCOPED-DEFINE START-SDO QUERY
{rtb/i/rtb_s_obj.i}

DEFINE VARIABLE MBuff AS HANDLE NO-UNDO.
DEFINE VARIABLE MQuery AS HANDLE NO-UNDO.
DEFINE VARIABLE MField1 AS HANDLE NO-UNDO.
DEFINE VARIABLE MField2 AS HANDLE NO-UNDO.

/*
Get xrefs for the PCODE object "sbborder.w" in Workspace "devel"
by passing its RECID to fnRtbGetObjectXrefs
*/
MBuff =
DYNAMIC-FUNCTION('fnRtbGetObjectXrefs':U,
DYNAMIC-FUNCTION('fnRtbGetObjectRecid':U,

"devel","sbborder.w","pcode")).

CREATE QUERY Mquery.
Mquery:SET-BUFFERS(Mbuff).
Mquery:QUERY-PREPARE("for each RowObject").
Mquery:QUERY-OPEN.
Mquery:GET-FIRST.

QUERY-BLOCK:
REPEAT:
IF (Mquery:QUERY-OFF-END) THEN
LEAVE QUERY-BLOCK.

ASSIGN Mfield1 = Mbuff:BUFFER-FIELD("XrefObject")
Mfield2 = Mbuff:BUFFER-FIELD("XrefType") .

DISPLAY Mfield1:BUFFER-VALUE FORMAT "x(40)"
Mfield2:BUFFER-VALUE FORMAT "x(10)" WITH FRAME a DOWN.

Mquery:GET-NEXT.
END.

Mbuff:BUFFER-RELEASE.
DELETE OBJECT Mquery.

/* Destroy the SDOs started by this program */
PUBLISH "evRtbDestroyObject":U.

Interfaces

 A-13

The following is a list of supported API functions and procedures, with the SDO that contains
the function/procedure in parentheses:

fnRtbAssignObject (rtb_u_repo.w)
Assigns in the specified Workspace the object version specified by object type, object name,
Product Module, and version, with the specified object Group and Level.

Parameters:
INPUT Psid AS INTEGER /* Session ID */
INPUT Pwspace-id AS CHARACTER
INPUT Pobj-type AS CHARACTER
INPUT Pobject AS CHARACTER
INPUT Ppmod AS CHARACTER
INPUT Pversion AS INTEGER
INPUT Pgroup AS CHARACTER
INPUT Plevel AS INTEGER

Returns: CHARACTER

Notes: Returns non-blank on error.

fnRtbCheckInObject (rtb_u_repo.w)
Checks into the repository the object specified by Workspace, Product Module, object type,
and object name.

Parameters:
INPUT Psid AS INTEGER /* Session ID */
INPUT Pwspace-id AS CHARACTER
INPUT Ppmod AS CHARACTER
INPUT Pobj-type AS CHARACTER
INPUT Pobject AS CHARACTER
INPUT Proot-ver AS LOGICAL /* TRUE to store as root version */

Returns: CHARACTER

Notes: Returns non-blank on error.

fnRtbCheckObjectIntegrity (rtb_u_repo.w)
Compare object source in OS file to repository for object specified by Workspace, Product
Module, object type, and object name.

Parameters:
INPUT Pwspace-id AS CHARACTER
INPUT Ppmod AS CHARACTER
INPUT Pobj-type AS CHARACTER

Roundtable User's Guide

 A-14

INPUT Pobject AS CHARACTER

Returns: CHARACTER

Notes: Returns "Changed" if OS and repo differ. Other non-blank indicates error specified in
text.

fnRtbCheckOutObject (rtb_u_repo.w)
Checks out of the repository the object specified by Workspace, Product Module, object type,
and object name, with the specified level ("version", "revision", or "patch") under the
specified Task with the specified version note.

Parameters:
INPUT Psid AS INTEGER /* Session ID */
INPUT Pwspace-id AS CHARACTER
INPUT Ppmod AS CHARACTER
INPUT Pobj-type AS CHARACTER
INPUT Pobject AS CHARACTER
INPUT Plevel AS CHARACTER
INPUT Ptask-num AS INTEGER
INPUT Pprocess AS CHARACTER /* Use empty string (“”) */
INPUT Pupd-notes AS CHARACTER

Returns: CHARACTER

Notes: Returns non-blank on error.

fnRtbCompileObject (rtb_u_obj.w)
Compiles the object specified by Workspace, object type, and object name, with optional xref
and listing. Specify a Task number other than 0 to compile a task-directory object.

Parameters:
INPUT Psid AS INTEGER /* Session ID */
INPUT Pwspace-id AS CHARACTER
INPUT Pobj-type AS CHARACTER
INPUT Pobject AS CHARACTER
INPUT Pxref AS LOGICAL /* Compile w/xref? */
INPUT Plist AS LOGICAL /* Generate compile listing? */
INPUT Ptask-num AS INTEGER

Returns: CHARACTER

Notes: Returns non-blank on warning or error with the format message<CHR(1)>filename

where filename is path to file containing error listing.

Interfaces

 A-15

fnRtbCompleteTask (rtb_u_task.w)
Completes the Task specified by Task number.

Parameters:
INPUT Psid AS INTEGER /* Session ID */
INPUT Ptask-num AS INTEGER

Returns: CHARACTER

Notes: Returns non-blank on error. Functions fnRtbCheckTaskDependencies and

fnRtbCheckTaskObjectOrphans (also in the SDO) should be run before
running this function. Since dependencies and orphans are warnings only, this function
will complete the task even if dependencies and/or orphans exist.

fnRtbCreateTask (rtb_u_task.w)
Creates a Task in the specified Workspace with the specified manager, programmer, summary,
user reference, description, share-status, and Task directory

Parameters:
OUTPUT Ptask-num AS INTEGER
INPUT Psid AS INTEGER
INPUT Pwspace-id AS CHARACTER
INPUT Pmanager AS CHARACTER
INPUT Pprogrammer AS CHARACTER
INPUT Psummary AS CHARACTER
INPUT Puser-task-ref AS CHARACTER
INPUT Pdescription AS CHARACTER
INPUT Pshare-status AS CHARACTER
INPUT Ptask-dir AS CHARACTER

Returns: CHARACTER

Notes: New Task number is returns in Ptask-num parameter. Function returns non-blank on

error.

fnRtbCreateXrefsFromTable (rtb_u_xref.w)
Creates object xref records in specified Workspace for objects in temp-table specified by
TABLE-HANDLE. Processing is logged in file specified by Plogfile.

Parameters:
INPUT Psid AS INTEGER /* Session ID */

Roundtable User's Guide

 A-16

INPUT Pwspace-id AS CHARACTER
INPUT TABLE-HANDLE AS PhTTxrefs
INPUT-OUTPUT Plogfile AS CHARACTER

Returns: CHARACTER

Notes: Returns non-blank on error. The temp-table required by this function has the

following format:

DEFINE TEMP-TABLE TTxref
FIELD src-object AS CHARACTER
FIELD ref-type AS CHARACTER FORMAT "x(20)"
FIELD obj-text AS CHARACTER FORMAT "x(200)" EXTENT 4
INDEX object AS PRIMARY src-object ASCENDING.

Where the fields of the temp-table contain the following data:

src-object = Name of object in the selected workspace that
contains the reference (e.g. if "program.java" references
"java.class", this field should contain "program.java").

ref-type = Valid reference type as listed in the Progress
Language Reference under the COMPILE statement
following the XREF parameter (i.e. "RUN","INCLUDE",
"CREATE", etc.).

obj-text[1-4] = Valid object identifier as shown in the Progress Language
Reference under the COMPILE statement following the
XREF parameter. Each element of the object identifier
separated by a space should be placed in an extent of this
field.

Examples:

src-object : procedure.p
ref-type : INCLUDE
obj-text[1] : include.i
obj-text[2] : ""
obj-text[3] : ""
obj-text[4] : ""

src-object : procedure.p
ref-type : ACCESS
obj-text[1] : database.table
obj-text[2] : field
obj-text[3] : ""
obj-text[4] : ""

Interfaces

 A-17

src-object : procedure.p
ref-type : FUNCTION
obj-text[1] : function-name,return-type
obj-text[2] : ""
obj-text[3] : ""
obj-text[4] : ""

fnRtbExtractVersionSource (rtb_u_repo.w)
Extracts from the repository to the specified directory the object source for the object version
specified by object type, object name, and version.

Parameters:
INPUT Ppmod AS CHARACTER
INPUT Pobj-type AS CHARACTER
INPUT Pobject AS CHARACTER
INPUT Pversion AS INTEGER
INPUT Ptarget-dir AS CHARACTER

Returns: CHARACTER

Notes: Returns non-blank on error.

fnRtbNewObject (rtb_u_obj.w)
Creates a new object in the specified Workspace, under specified Task, with specified object
name, object type, Code Subtype, Product Module, object Group, object Level, and
description.

Parameters:
INPUT Psid AS INTEGER /* Session ID */
INPUT Pwspace-id AS CHARACTER
INPUT Ptask-num AS INTEGER
INPUT Pobject AS CHARACTER
INPUT Pobj-type AS CHARACTER
INPUT Psub-type AS CHARACTER
INPUT Ppmod AS CHARACTER
INPUT Pgroup AS CHARACTER
INPUT Plevel AS INTEGER
INPUT Pdescription AS CHARACTER
INPUT Paction AS CHARACTER /* Use empty string (“”) */
INPUT Poption AS CHARACTER /* See Notes below */

Returns: CHARACTER

Notes: Returns non-blank on error. If the Pobject parameter begins with the "@" character

(an alias), this routine will check for part names in the Poption string. This should be a

Roundtable User's Guide

 A-18

comma-delimited list of relative path name and file name (example:
"reports/rpt1.p,reports/rpt1.i").

fnRtbRemoveObject (rtb_u_obj.w)
Removes from the specifies Workspace, the object specified by Product Module, object name,
and object type, optionally assigning the previous version, and optionally deleting the object
source from the Workspace directory.

Parameters:
INPUT Psid AS INTEGER /* Session ID */
INPUT Pwspace-id AS CHARACTER
INPUT Ppmod AS CHARACTER
INPUT Pdelete-source AS LOGICAL
INPUT Passign-prev AS LOGICAL
INPUT Ptask-num AS INTEGER
INPUT Pobject AS CHARACTER
INPUT Pobj-type AS CHARACTER

Returns: CHARACTER

Notes: Returns non-blank on error.

selective_compile (rtb_u_obj.w)
Compiles object as specified by parameters:

Parameters:
INPUT Ptask-num AS INTEGER

Task number to select objects from or 0 to ignore tasks
INPUT Pmodule AS CHARACTER
 Workspace Module to select objects from or MATCHES pattern
INPUT Pobj-group AS CHARACTER
 Object group to select objects from or MATCHES pattern
INPUT Pobj-type AS CHARACTER
 Object type to select (PCODE, PFILE, etc.) or MATCHES pattern
INPUT Pobject AS CHARACTER
 Object to select or MATCHES pattern
INPUT Pforce AS LOGICAL

Logical TRUE to force compile of (current) objects
INPUT Plistings AS LOGICAL
 Logical TRUE to generate compile listings
INPUT Pxref AS LOGICAL
 Logical TRUE to perform xref of selected object(s)
OUTPUT Perror AS CHARACTER

Interfaces

 A-19

 Non-blank if the process could not be performed

Returns: Nothing (Procedure)

Notes: Compile errors and warnings will be recorded in the selcomp.log file created in

the rtb_temp directory of the Roundtable session temp directory.

fnRtbUnlockObject (rtb_u_inuse.w)
Removes lock in specified session for each of the part names of the object specified by
Workspace, Product Module, object type, and object name.

Parameters:
INPUT Pwspace-id AS CHARACTER
INPUT Ppmod AS CHARACTER
INPUT Pobj-type AS CHARACTER
INPUT Psid AS INTEGER
INPUT Ppartnames AS CHARACTER
INPUT Pobject AS CHARACTER

Returns: CHARACTER

Notes: Ppartnames must be a comma-delimited list of object part names. To completely
unlock an object, the Ppartnames parameter can be populated using the function
fnRtbGetVersionEditFilenames (available in rtb_q_ttver.w, rtb_q_ver.w, and rtb_u_ver.w).

A.8.3 Legacy API
For backward compatibility with earlier versions, Roundtable is distributed with a program
called rtb/p/rtb_api.p that translates earlier-version API calls to the current API
methods.

Please see detailed documentation inside the rtb/p/rtb_api.p procedure. It contains a
description of input parameters and required coding (before calling certain API procedures).

Glossary

Alias
An alternate name for a database.

Aliased Object
A PCODE object that has an object name that is different from its physical operating system filename.
Object aliases are normally used when two files in different directories have the same filename.

Assigning an Object
To add to a workspace an object that has already been created.

Central Object Repository
Roundtable keeps objects in the Central Object Repository (COR). The COR stores all of the objects
and their definitions in the system.

Changes Report
A list of changes in a workspace across a range of events. Provides testers and/or customers with
extensive information about what has changed in a workspace between any two events.

Check In
To copy a checked out version of an object into the Central Object Repository. Checking in an object
completes the object and allows others to see the changes and use the new version.

Check Out
To create a new version of an object by copying the object and assigning it to a new version number.
The new version is used for a specific task and can only be used by one programmer.

Completing a Task
An activity processed once the work is finished in the task. Completing the task gives all the objects in
the task a C (complete) status.

Roundtable User’s Guide

Glossary-2

Configuration
A map of the contents of your application at a given time.

Configuration Hierarchy
A map of the contents of your application that usually corresponds closely to the architecture of your
system.

Configuration Level
Application software systems under configuration control are mapped into a configuration hierarchy. The
configuration level refers to the depth of the hierarchical tree where an object is found.

CRC
See Cyclical redundancy check.

Cross Reference
A cross reference (Xref) is generated for many kinds of relationships among objects in a workspace.
These cross references are generated when a full compile is performed on a compilable object. Database
schema objects are also cross referenced automatically by the system.

Cyclical Redundancy Check (CRC)
This is a calculated value that is generally unique for any given piece of data. Roundtable calculates a
CRC value for each file loaded into the repository. When required, this CRC value can be compared with
a CRC calculation on a file at the operating system level to determine if the repository file and OS file
are the same.

Data Type
The PROGRESS data type determines what kind of data can be stored in a variable or database field.

Deployment
Roundtable manages the process of packaging a release of an application system from a workspace for
delivery to a remote site. The process of packaging the release is called the deployment process, and the
update package created is called a deployment.

Development Workspace
A workspace used to create, modify, and delete new objects and data. Since this workspace is unstable,
it is only suitable for limited, informal testing, usually done by the programmers.

Glossary

Glossary-3

DOC
An object that normally contains documentation and is always stored in a type directory called doc off
of the objects’ workspace module directory. You can also use the PCODE object to store documentation
objects. Check out a DOC object to modify the document it contains.

Domains
Occur when you create a single definition that is used in a number of different places. For example, you
might define a single PFIELD object called Address and use this field definition in a number of different
tables, or even many times in the same table.

Event
Each completed change that results in a change to the contents of a workspace is recorded as a sequential
event in the workspace event history.

Event History Report
The event history of a workspace sorted from newest to oldest between two events. Traces the history of
individual objects or groups of objects belonging to a product module.

Field Assignment
A PFIELD object contains attributes that describe a field (column) and are referenced by field
assignments in PFILE objects. The collection of attributes in the PFIELD object and PFILE field
assignment completely define a field in a table. A field assignment contains the product module and
name of the PFIELD object, local field name, field order, mandatory status, and triggers of the field.

Force Compile
A compile that occurs even if Roundtable does not think the object needs compiling.

Full Compile
A compile with cross references. Leave blank to just compile and save.

Group Access
You define a collection of security privileges and name them with a group access code. You assign one
or more group access codes to one or more users in a workspace. Security privileges accumulate based
on each group access code assigned to a user in a workspace.

Group Access Code
A code that identifies a set of security privileges that can be enjoyed within the Roundtable environment.
You create access groups and then specify what security privileges belong to the group. You can then
associate one or more access groups with one or more users by workspace.

Roundtable User’s Guide

Glossary-4

Group Code
User-defined values entered when the user defines objects. The group code is used to sort objects in the
object browse table.

Group Directories
Roundtable checks out objects to a task directory where the programmer modifies them. The changes are
not seen by others until the programmer executes the Update Group/Public Source option, which copies
the modified objects into a group directory. Other programmers might choose to see the changes by
attaching one of their tasks to the group. The last completed version of the objects remains in the
workspace directory.

Listings
Check to print the fully expanded code (with the include files). This is like the Listing parameter in
PROGRESS. Roundtable saves the listing file as *.lis file.

Module Load
A Roundtable utility used to search for objects in the operating system directory associated with a
selected workspace module. The user is able to quickly create new objects for the new source code.

Object
Any field, table, database, document, or piece of code that you want Roundtable to manage. It is the
lowest level of configuration management.

Object Group
User-defined values entered when the user defines objects. The group code is used to sort the objects in
the object browse table.

Object Types
All workspaces are comprised of collections of Roundtable objects. These objects are of one of the
following types:
 PCODE: A collection of optimized files whose purpose is specified by assigned subtype
 PFIELD: A database schema definition for a field
 PFILE: A database schema definition for a table
 PDBASE: A database schema definition for a database
 DOC: A special type used for documentation objects

Object Variants
Variations of the same object in a system.

Glossary

Glossary-5

Object Version
Created each time you check in an object. Object versions are stored in the repository. You can see a list
of all versions of an object by selecting the object in a workspace and then choosing View. Object
versions are permanent. They are never deleted from the repository.

Orphan
When the same object is checked out in two workspaces at the same time, an object version orphan is
created. The term indicates that the changes made in one of the object versions will be lost in some future
promotion process among workspaces. For instance, suppose you have a development and test
workspace, that you check out the same object in both workspaces, and then you check in both objects. If
you then import the object from the development workspace into the test workspace, the object version
imported from development replaces the object version created in test. The changes made in test are lost.
Roundtable warns you of object orphan conditions wherever possible.

Partner Site
A Roundtable installation that receives repository information from another Roundtable installation. You
perform a partner site deployment at the sending site and a partner site load at the receiving site to move
repository information among sites. Each site must have a different site number.

PCODE
An object that encapsulates up to nine files that together define a system component. These system
components can contain textual or binary data, and you assign a subtype code to each PCODE object to
describe these files. These files are called parts and their attributes are specified in the subtype definition.
Check out a PCODE object when you need to modify the system component it encapsulates.

PDBASE
An object that contains the topmost components of a database schema definition. PDBASE (database)
objects record a list of table assignments that relate PFILE objects with the PDBASE object. Check out a
PDBASE object when you need to add, delete, or change the name of a database table or sequence.

PFIELD
An object that contains attributes that describe a field (column) and are referenced by field assignments
in PFILE objects. The collection of attributes in the PFIELD object and PFILE field assignment
completely define a field in a table. A field assignment contains the product module and name of the
PFIELD object, local field name, field order, mandatory status, and triggers of the field. The PFIELD
object contains the remainder of attributes that define a field in a table.

PFILE
An object that contains attributes that describe a table. PFILE objects are referenced by table assignments
in PDBASE objects. The collection of attributes in the PFILE object and PDBASE table assignment

Roundtable User’s Guide

Glossary-6

completely define a database table. Check out a PFILE object when you need to add, delete, or change a
PFILE assignment or an index definition.

Pre-production Workspace
After testing, objects and data are imported from the testing workspace into the pre-production
workspace. Since this workspace should function with few or no major problems, you can release it to
sophisticated users for Beta testing and evaluations. Normally you would require approval to make
changes in this workspace for load testing of the application.

Product
Roundtable provides three logical levels of configuration hierarchy: product, product module, and object.
Products own one or more product modules, and product modules own one or more objects. This
hierarchy provides a logical view of an application system and is useful for implementing promotion and
deployment strategies for the application system.

Product Module
Roundtable provides three logical levels of configuration hierarchy: product, product module, and object.
Products own one or more product modules, and product modules own one or more objects. This
hierarchy provides a logical view of an application system and is useful for implementing promotion and
deployment strategies for the application system.

Production Workspace
A “live” system that must function flawlessly under real-world conditions. You normally require
approval to make changes in the workspace.

Promote
The process of importing objects from one or more source workspaces into a target workspace.

PROPATH
A comma-delimited string that contains the operating system directory paths that will be searched by
PROGRESS for source code during the compile process.

R-code
PROGRESS-compiled procedures have an extension of .r. Any compiled PROGRESS procedure is referred
to as r-code.

Release
A record of a specific event number in a workspace. It is used to re-create the exact contents of the
workspace configuration that existed as of that event for purposes of promotion and deployment from a
workspace. A release labels a version of a workspace.

Glossary

Glossary-7

Release Record
A record that features a sequential release number that uniquely identifies it in the workspace. Release
records also contain a text label that describes the configuration of the system at the time the release
record was created. For example, release number 23 from the Test workspace might have the descriptive
label “Beta Release 2.1a.”

Release Report
A detailed list of the changes in a workspace between two releases. Useful for testers and/or customers
when receiving new releases.

Remote Site
A site that receives updates packaged by Roundtable.

RTBSETUP File
The Roundtable parameters file that contains workstation-specific options.

Runtask.p
A program used to set up your task environment if you need to work with your task outside of
Roundtable.

Run-time, Query, or Development
PROGRESS products types.

S-code
PROGRESS source code.

Schema Objects
PFILE, PFIELD, and PDBASE objects.

Selective Compile
Provides you with a number of options for your compile. You can enter a specific task to compile or you
can enter a 0 to disregard the task number. If you specify a task number, Roundtable compiles only the
objects within the selected task that have changed.

Share Status
Checked out objects have a share status of Task, Public, Group, or Central. The share status controls
where the object is edited and the visibility of the edits on the object to the rest of the users in a
workspace.

Roundtable User’s Guide

Glossary-8

Source Workspace
The promotion of code through a development cycle is defined by assigning source workspaces to each
workspace in the system. The import process build searches each specified source workspace for objects
that should be imported into a selected target workspace. For instance, if you have a development
workspace and a testing workspace, you specify that the development workspace is a source workspace
for the testing workspace. The import process pulls completed object versions included in the latest
source workspace release level into the target workspace.

Subtype
Controls the naming, management, creation, and storage of PCODE objects. Up to nine file parts are
used to define a system component. These system components can contain textual or binary data. In
addition to file parts, you specify edit, naming, and procedure generation services for a subtype, as
required.

Syntax Check
A compile that does not create R-code. It ensures the source code will compile without actually
compiling.

Table Trigger
A database table might have a table trigger. The trigger specifies the name of a procedure file to execute
when a trigger condition occurs. The trigger conditions include: FIND, CREATE, WRITE, and
DELETE.

Target Workspace
The destination of objects in an import process. The import process is executed in the target workspace,
and objects are imported into it from one or more source workspaces.

Task Directories
Created where checked out objects are copied. This makes it possible to isolate your work from others
until it is ready to be checked in or promoted for review into the group or central workspace directories.
The use of task directories is optional.

Task Number
The number you specify for a task. If you enter a task number, Roundtable compiles only the objects that
have changed in that task. If you enter 0, Roundtable disregards the task numbers and compiles
everything that needs compiling.

Glossary

Glossary-9

Task Management
The management of units of work performed on the application system managed by Roundtable. All
work done on individual objects in the Roundtable system is performed under a task. Usually, managers
assign tasks and programmers check out one or more objects under the task. Completing a task checks in
all objects that were checked out under the task. Various task reports are available.

Testing Workspace
Where the application is created after importing objects and data from the development workspace.
Although this workspace changes less frequently than the development workspace, some changes are
necessary to complete the testing process. This workspace is stable enough for significant quality
assurance Alpha testing.

Trigger
An event, such as reading, writing, deleting, or updating a record, that causes another procedure to
execute.

Update Status
An attribute of an object’s assignment to a workspace. The update status attribute can have a value of
Current, Modified, or New. This update status attribute is one of the attributes used to determine if the
object needs to be compiled or updated.

Unapplied Changes Report
A list of all schema changes that have been entered but not updated. Verifies the status of the schema in
the workspace.

User Access Assignments
Specify what security privileges a user enjoys in a specified workspace. A user access assignment
consists of a user paired with a group access privilege in a workspace. Users can be given different
security privileges in each workspace.

User Maintenance
The process of adding, editing, or deleting users in the Roundtable system.

Variant
Roundtable allows you to create more than one variation of the same object to create variants. Variants
have the same object name and type but belong to different product modules. For example, you might
need three variations of an install program, one each for UNIX, DOS, and Windows. Only one of the
variants of an object can appear in a workspace at the same time. Variants are often created in custom
workspaces that are specific to customers or vertical markets.

Roundtable User’s Guide

Glossary-10

Version Control
The ability to manage concurrent changes by multiple programmers by creating new object versions.

WIP
See Work-in-process.

Work-in-process (WIP)
The status of an object when it is checked out or when a task is being worked on.

Workspace
A copy of your application programs and related databases, the content of which is known and managed
by Roundtable. Roundtable manages the creation, deletion, and modification of objects (code, databases,
tables, fields, and text) within the workspace. A workspace is a configuration of object versions.

Workspace Directories
A workspace has a root directory under which the subdirectories and files that make up the software
application exist. The root directory is specified as an absolute path in the Workspace Maintenance
screen. Subdirectories are defined as part of workspace module definitions and subtype definitions.

Workspace Event History
Roundtable maintains a record of every change to object versions within a workspace. Roundtable
records these changes–called events–in the event history file. Roundtable assigns event numbers to
object versions when you complete, assign, or de-assign an object. You can view the event history of a
workspace or an object in a workspace at any time.

Workspace Module
The contents of each workspace is broken up into one or more workspace modules. Unlike a file system
where many levels of nested subdirectories can be seen, only one level of workspace modules exists.
Each workspace module points to a single relative subdirectory under the workspace root directory. This
subdirectory is defined in the workspace module definition. The contents of a workspace module are
defined by the assignment of workspace module definitions to one or more product modules.

Workspace Module Definition
Names a workspace module, provides a description for the workspace module, and specifies a file system
subdirectory relative to any workspace’s root directory. You assign a workspace module definition to
product modules. You assign product modules to workspaces to define the logical content of your
application. Roundtable creates a workspace module and associated subdirectory in the workspace based
on the workspace module definition associated with the assigned product module. You specify a product
module when creating a new object. The object is stored in the subdirectory specified in the workspace
module definition, and the object is listed in the workspace module.

Glossary

Glossary-11

Workspace Path
Tells Roundtable the directory where you want to store the workspace and its components. The first
workspace path should always be the root directory to your workspace. No two workspaces should share
the same root directory. Roundtable uses the other specified paths to locate your source code.

Workspace Releases
Consist of changes or events that have occurred in a workspace since the last release. Roundtable allows
you to create two types of releases, a developmental release and a formal release. The developmental
release is an internal release distributed to other workspaces within the system, while a formal release is
a release distributed to users. Normally, you create releases in conjunction with the quality assurance
process.

Workspace Report
A complete list of the objects in a workspace ordered by a workspace module. Provides a hard-copy of
the current workspace configuration.

Workspace Source
The import process promotes code from one or more workspaces (source workspaces) into the current
(target) workspace.

Workspace Target
The import process promotes code from one or more workspaces (source workspaces) into the current
(target) workspace.

Xref Level
The amount of cross reference information maintained in a workspace is defined by the user-specified
Xref level. A level of 1 means that no cross reference information will be maintained.

Roundtable User’s Guide

Glossary-12

